Merck
CN
All Photos(3)

Documents

Safety Information

723614

Sigma-Aldrich

4-(Diphenylamino)phenylboronic acid pinacol ester

95%

Sign Into View Organizational & Contract Pricing

Synonym(s):
N-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl-N-phenylbenzenamine, Diphenyl-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-amine
Empirical Formula (Hill Notation):
C24H26BNO2
Molecular Weight:
371.28
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

95%

form

powder

mp

93-98 °C

SMILES string

CC1(C)OB(OC1(C)C)c2ccc(cc2)N(c3ccccc3)c4ccccc4

InChI

1S/C24H26BNO2/c1-23(2)24(3,4)28-25(27-23)19-15-17-22(18-16-19)26(20-11-7-5-8-12-20)21-13-9-6-10-14-21/h5-18H,1-4H3

InChI key

VKSWIFGDKIEVFZ-UHFFFAOYSA-N

Related Categories

General description

4-(Diphenylamino)phenylboronic acid pinacol ester is an aryl boronic acid ester that is majorly used in organic synthesis. It can be used in the transition metal-catalyzed Suzuki-Miyaura cross-coupling reaction due to its low toxicity and unique reactivity. It is an electron rich boronic acid ester that can also be used in protodeboronation.

Application

4-(Diphenylamino)phenylboronic acid pinacol ester may be used to synthesize 4-(2,2′ -bithiophen-5-yl)- 5-phenylpyrimidine for potential usage in the development of sensing devices for the detection of nitroaromatic explosives. It can also be used in the synthesis of oligothiophene (electron donating group) for the fabrication of dye sensitized solar cells (DSSCs).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Regulatory Information

新产品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Base-promoted silver-catalyzed protodeboronation of arylboronic acids and esters
Liu C, et al.
Royal Society of Chemistry Advances, 5(20), 15354-15358 (2015)
Triphenylamine-based dyes for dye-sensitized solar cells
Zhang F, et al.
Dyes and Pigments, 81(3), 224-230 (2009)
New V-shaped push-pull systems based on 4, 5-di (hetero) aryl substituted pyrimidines: their synthesis and application to the detection of nitroaromatic explosives
Verbitskiy EV, et al.
ARKIVOC (Gainesville, FL, United States), 3(11), 360-373 (2016)
Microwave-assisted synthesis of 4-(2, 2'-bithiophen-5-yl)-5-phenylpyrimidine derivatives as sensors for detection of nitroaromatic explosives
Verbitskiy EV, et al.
Chemistry of Heterocyclic Compounds, 52(11), 904-909 (2016)
Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals
Progress in Fluorine Science Series (2018)

Articles

The soaring global demand for energy, coupled with the limited supply of fossil fuels, has increased the need for renewable, low-cost energy sources. Organic electronics have shown great promise for applications in lighting, power, and circuitry, with rapidly improving performance already surpassing that of amorphous silicon-based counterparts.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service