Skip to Content
Merck
CN

724858

Poly(N-isopropylacrylamide-co-methacrylic acid)

methacrylic acid 10 mol %, Mn 60,000

Synonym(s):

Poly(NIPAM-co-MAA), Polyacrylamide, functionalized polyNIPAM, functionalized polyacrylamide, polyNIPAM

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
(C6H11NO)m (C4H6O2)n
CAS Number:
MDL number:
UNSPSC Code:
12162002
NACRES:
NA.23
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Poly(N-isopropylacrylamide-co-methacrylic acid), methacrylic acid 10 mol %, Mn 60,000

form

solid

SMILES string

N(C(C)C)C(=O)C=C.OC(=O)C(=C)C

InChI

1S/C6H11NO.C4H6O2/c1-4-6(8)7-5(2)3;1-3(2)4(5)6/h4-5H,1H2,2-3H3,(H,7,8);1H2,2H3,(H,5,6)

InChI key

BGJOTKHBFYMJST-UHFFFAOYSA-N

mol wt

Mn 60,000

composition

methacrylic acid, 10 mol %

mp

>300 °C

Mw/Mn

≤2.5

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

Intelligent Swelling/Collapsing copolymer that can be used as a temperature- and pH-sensitive materials.

Storage Class

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Weitai Wu et al.
Biosensors & bioelectronics, 25(12), 2603-2610 (2010-05-18)
A new class of optical glucose nanobiosensors with high sensitivity and selectivity at physiological pH is described. To construct these glucose nanobiosensors, the fluorescent CdS quantum dots (QDs), serving as the optical code, were incorporated into the glucose-sensitive poly(N-isopropylacrylamide-acrylamide-2-acrylamidomethyl-5-fluorophenylboronic acid)
Sabrina Schmidt et al.
Langmuir : the ACS journal of surfaces and colloids, 27(16), 9801-9806 (2011-07-09)
Charged poly(N-isopropylacrylamide-co-methacrylic acid) [P(NiPAM-co-MAA)] microgels can stabilize thermo- and pH-sensitive emulsions. By placing charged units at different locations in the microgels and comparing the emulsion properties, we demonstrate that their behaviors as emulsion stabilizers are very different from molecular surfactants
J Moselhy et al.
Journal of biomaterials science. Polymer edition, 11(2), 123-147 (2000-03-16)
The pH- and temperature-responsive poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAm/MAA) nanoparticles are of potential application in targeted drug delivery. Their responsive properties in the presence of human serum albumin were investigated using dynamic light scattering (DLS), protein assay, and electron spin resonance (ESR)
Pierre Simard et al.
International journal of pharmaceutics, 381(2), 86-96 (2009-05-19)
A promising avenue in cancer therapy using liposomal formulations is the combination of site-specific delivery with triggered drug release. The use of trigger mechanisms in liposomes could be relevant for drugs susceptible to lysosomal hydrolytic/enzymatic degradation. Here, we propose a
Eunice Costa et al.
Langmuir : the ACS journal of surfaces and colloids, 28(26), 10082-10090 (2012-06-09)
The layer-by-layer (LbL) assembly of polyelectrolyte pairs on temperature and pH-sensitive cross-linked poly(N-isopropylacrylamide)-co-(methacrylic acid), poly(NIPAAm-co-MAA), microgels enabled a fine-tuning of the gel swelling and responsive behavior according to the mobility of the assembled polyelectrolyte (PE) pair and the composition of

Articles

Microparticles in drug delivery: Study on controlling chitosan microparticle size and distribution, exploring encapsulation of BSA and TPP cross-linker.

Poly(N-isopropylacrylamide), or PNIPAM, is a stimuli-responsive polymer that responds to changes in pH and temperature and has a LCST around 32 C.

Professor Mitsuhiro Ebara provides insights on several types of smart nanofiber mesh systems that have been explored for different drug delivery purposes.

By altering the physicochemical properties, smart or intelligent drug delivery systems can be designed to deliver therapeutic molecules on-demand. Learn more about the application of stimuli-responsive materials in drug delivery.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service