Merck
CN
All Photos(1)

Documents

772410

Sigma-Aldrich

PTB7

greener alternative

average Mw 80,000-200,000, PDI ≤3.0

Sign Into View Organizational & Contract Pricing

Synonym(s):
Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl})
Empirical Formula (Hill Notation):
(C41H53FO4S4)n
CAS Number:
NACRES:
NA.23

description

Band gap: 1.84 eV

Quality Level

form

solid

mol wt

average Mw 80,000-200,000

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

solubility

chlorobenzene: soluble
chloroform: soluble
dichlorobenzene: soluble

λmax

680 nm (thin film)

Orbital energy

HOMO -5.15 eV 
LUMO -3.31 eV 

Mw/Mn

2.4 +/- 0.6

PDI

≤3.0

greener alternative category

General description

PTB7 is a semiconducting polymer used in organic photovoltaics with an energy efficiency of 9.15%. It can act as an electron donor with narrow optical band gaps and excellent π-π conjugation while forming a nanocomposite with fullerenes.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product belongs to Enabling category of greener alternatives thus aligns with "Design for energy efficency". Hole transport organic materials allow perfect energy level alignment with the absorber layer and therefore efficient charge collection, are prone to degradation in ambient conditions.Click here for more information.

Application

High-Efficiency Organic Solar Cells (OPVs)
OPV Device Structure: ITO/PEDOT:PSS/PTB7 :PC71BM/Ca/Al
  • JSC = 14.9 mA/cm2
  • VOC = 0.75 V
  • FF = 0.69
  • PCE = 7.4%
It is majorly used as an active layer that enhances the overall performance by increasing the light absorption and improving the electron mobility of polymeric solar cells (PSCs).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7: PC71BM solar cells
Collins BA, et al.
Advanced Energy Materials, 3(1), 65-74 (2013)
Effect of Active Layer Thickness on the Performance of Polymer Solar Cells Based on a Highly Efficient Donor Material of PTB7-Th
Zang Y, et al.
The Journal of Physical Chemistry C, 122(29), 16532-16539 (2018)
ZnO: CNT assisted charge transport in PTB7: PCBM blend organic solar cell
Oseni SO, et al.
Journal of alloys and compounds, 748(1), 216-222 (2018)
Highly efficient tandem polymer photovoltaic cells
Sista S, et al.
Advanced Materials, 22(3), 380-383 (2010)
Efficient organic solar cells based on PTB7/PC71BM blend film with embedded different shapes silver nanoparticles into PEDOT: PSS as hole transporting layers
Chen C, et al.
Organic Electronics, 62, 95-101 (2018)

Articles

The development of high-performance conjugated organic molecules and polymers has received widespread attention in industrial and academic research.

Organic photovoltaics (OPVs) represent a low-cost, lightweight, and scalable alternative to conventional solar cells. While significant progress has been made in the development of conventional bulk heterojunction cells, new approaches are required to achieve the performance and stability necessary to enable commercially successful OPVs.

Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service