Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Empirical Formula (Hill Notation):
Cu
CAS Number:
Molecular Weight:
63.55
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
41141805
EC Number:
231-159-6
MDL number:
Product Name
Copper, nanopowder, 60-80 nm particle size (SAXS), ≥99.5% trace metals basis
InChI key
RYGMFSIKBFXOCR-UHFFFAOYSA-N
InChI
1S/Cu
SMILES string
[Cu]
assay
≥99.5% trace metals basis
form
nanopowder
resistivity
1.673 μΩ-cm, 20°C
particle size
60-80 nm (SAXS)
bp
2567 °C (lit.)
mp
1083.4 °C (lit.)
density
8.94 g/mL at 25 °C (lit.)
application(s)
battery manufacturing
Quality Level
Related Categories
Application
Copper nanopowders have seen use in biomedical applications as an antimicrobial ; as plasmonic materials and as a component of reforming catalysts.
Preparation Note
Partially Passivated: < 5% oxygen added by weight
signalword
Danger
hcodes
Hazard Classifications
Aquatic Acute 1 - Aquatic Chronic 1 - Flam. Sol. 2 - Self-heat. 1
Storage Class
4.2 - Pyrophoric and self-heating hazardous materials
wgk
WGK 2
flash_point_f
Not applicable
flash_point_c
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Jayesh P Ruparelia et al.
Acta biomaterialia, 4(3), 707-716 (2008-02-06)
The antimicrobial properties of silver and copper nanoparticles were investigated using Escherichia coli (four strains), Bacillus subtilis and Staphylococcus aureus (three strains). The average sizes of the silver and copper nanoparticles were 3 nm and 9 nm, respectively, as determined
Vizcaino; A.J.; et al.
International Journal of Hydrogen Energy, 32, 1450-1461 (2007)
Chan; G.H.; et al.
Nano Letters, 7, 1947-1952 (2007)
Hiroshi Sato et al.
Science (New York, N.Y.), 343(6167), 167-170 (2013-12-18)
Carbon monoxide (CO) produced in many large-scale industrial oxidation processes is difficult to separate from nitrogen (N2), and afterward, CO is further oxidized to carbon dioxide. Here, we report a soft nanoporous crystalline material that selectively adsorbs CO with adaptable
Magnus Andersson et al.
Nature structural & molecular biology, 21(1), 43-48 (2013-12-10)
Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service
