Skip to Content
Merck
CN

790702

Sigma-Aldrich

(1S,2S)-(-)-1,2-Dicyclopropylethylenediamine dihydrochloride

98%

Sign Into View Organizational & Contract Pricing

Select a Size


About This Item

Empirical Formula (Hill Notation):
C8H16N2 · 2HCl
CAS Number:
Molecular Weight:
213.15
MDL number:
UNSPSC Code:
12352116
PubChem Substance ID:
NACRES:
NA.22
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Assay

98%

form

powder

mp

288-293 °C

functional group

amine

SMILES string

N[C@H]([C@@H](N)C1CC1)C2CC2.Cl.Cl

InChI

1S/C8H16N2.2ClH/c9-7(5-1-2-5)8(10)6-3-4-6;;/h5-8H,1-4,9-10H2;2*1H/t7-,8-;;/m0../s1

InChI key

OTCFJCLSSIOTKE-FOMWZSOGSA-N

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Regulatory Information

新产品

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Related Content

The Chin group is interested in computational and experimental approaches to understanding stereoselective recognition and catalysis. Their studies in weak forces (H-bonding, electronic and steric effects) has led to a highly efficient method for making limitless varieties of chiral vicinal diamines from the 'mother diamine' that are useful for developing stereoselective organocatalysts or transition metal-based catalysts as well as for developing drugs (Acc Chem Res (2012) p1345). The 'mother diamine' is also useful for making binol, monophos and binap analogs. The Chin group is also interested in using reversible covalent bonds for stereoselective recognition and L to D conversion of natural and non-natural amino acids (EJOC (2012) p229).

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service