Merck
CN
All Photos(2)

Documents

791555

Sigma-Aldrich

Titania paste, active opaque

Sign Into View Organizational & Contract Pricing

Synonym(s):
Greatcell Solar® 18NR-AO Titania Paste, TiO2 paste
MDL number:
PubChem Substance ID:
NACRES:
NA.23

description

Crystal Structure: > 99% anatase (analysis carried out on starting material, prior to paste manufacture)

form

paste (cream)

concentration

27.0 wt. %

avg. part. size

20 nm (active)
≤450 nm (scatter)

viscosity

40000-55000 mPa.s(20 °C) (Analysis carried out with 20mm 4 degree cone/plate; 40 s-1))

InChI

1S/2O.Ti

InChI key

GWEVSGVZZGPLCZ-UHFFFAOYSA-N

Related Categories

General description

Titania paste, active opaque is a precursor for titania that has anatase particles and larger sized anatase scatter particles, used to form a white coating on the fluorine doped tin oxide glass (FTO) substrate. It is used in a variety of electrochemical devices to improve electron mobility and power efficiency.

Application

Titania paste has a hierarchical pore structure which allows non-agglomerated loading on nanomaterials for the fabrication of dye sensitized solar cells with higher light absorption.
Use Active Opaque Titania Paste in applications that do not require transparency.
The dispersed scattering particles in Active Opaque Titania Paste formulation lead to enhanced DSC performance through the large surface/volume ratio of the sintered film.
Active Opaque Titania Paste has a blend of active anatase particles (~20nm) and larger anatase scatter particles (up to 450nm).
After drying; this paste must be fired at or above 500°C. This results in an opaque sintered layer with film thickness of 7-8μm for one printed layer and ~15μm for two layers; when using a 48T mesh.
This paste exhibits optimal rheological properties that provide good surface uniformity and contain organic binders specially formulated to provide versatile porosity suitable for a range of dye/electrolyte systems.
Storage: Store in the dark at 20°C

Legal Information

Product of Greatcell Solar® exclusive supplier of Sun2 products under license from EPFL.
Greatcell Solar® is a registered trademark of Greatcell Solar
Greatcell Solar is a registered trademark of Greatcell Solar

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2

Storage Class Code

10 - Combustible liquids

WGK

WGK 1

Flash Point(F)

195.8 °F

Flash Point(C)

91 °C


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Mesoporous titania hollow spheres applied as scattering layers in quantum dots sensitized solar cells
Xu X, et al.
Materials Chemistry and Physics, 136(2-3), 1060-1066 (2012)
Thiazolo [5, 4-d] thiazole-based organic sensitizers with strong visible light absorption for transparent, efficient and stable dye-sensitized solar cells
Dessi A, et al.
Royal Society of Chemistry Advances, 5(41), 32657-32668 (2015)
Formation of size-tunable dandelion-like hierarchical rutile titania nanospheres for dye-sensitized solar cells
Lan C, et al.
Royal Society of Chemistry Advances, 3(2), 559-565 (2013)
Towards green, efficient and durable quasi-solid dye-sensitized solar cells integrated with a cellulose-based gel-polymer electrolyte optimized by a chemometric DoE approach
Bella F, et al.
Royal Society of Chemistry Advances, 3(36), 15993-16001 (2013)
Sol-gel based TiO2 paste applied in screen-printed dye-sensitized solar cells and modules
Hovcevar M, et al.
Journal of Industrial and Engineering Chemistry, 19(5), 1464-1469 (2013)

Articles

Professor Shinar (Iowa State University, USA) summarizes the developments of a variety of sensor configurations based on organic and hybrid electronics, as low-cost, disposable, non-invasive, wearable bioelectronics for healthcare.

Few Monolayer Atomic Layer Deposition (ALD) on Surfaces and Interfaces for Energy Applications

Dye-sensitized solar cells (DSCs) are 3rd generation solar cells combining the promise of high efficiency with low production costs.

Organic photovoltaics (OPVs) represent a low-cost, lightweight, and scalable alternative to conventional solar cells. While significant progress has been made in the development of conventional bulk heterojunction cells, new approaches are required to achieve the performance and stability necessary to enable commercially successful OPVs.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service