Merck
CN
All Photos(1)

Documents

791873

Sigma-Aldrich

Conductive silver printing ink, resistivity 5-6 Ω cm

Sign Into View Organizational & Contract Pricing

Synonym(s):
Greatcell Solar®, Dyesol(R) DYAG50 conductive silver ink, Screen printable silver paste

description

volume resistivity 5 - 6 Ω cm

Quality Level

Assay

75-85% solids basis

form

paste (white)

viscosity

13,000-17,000 mPa.s (at shear rate of 10 sec-1 at 25°C)

General description

Sheet Resistivity is 2.0 - 2.4 μΩ/ square / mil. (at a 180°C cure temperature)

Application

Use this Conductive Silver Ink to achieve exceptionally high conductivity at low cure temperatures when printing on a variety of substrates, including glass, polyesters (PET/PEN), and ITO/FTO coated substrates.
This Conductive Silver Printing Ink is a specially formulated ink which provides exceptionally high conductivity at low cure temperatures. This highly conductive ink provides extremely low resistance printed conducting tracks, essential for the photovoltaic applications. By providing the lowest track resistances of printed current collectors, this material is a key enabler in plastic electronics, such as, DSSC, OPV, and CdTe solar cells.

Legal Information

Product of Greatcell Solar Materials Pty Ltd.
GreatcellSolar is a registered trademark of Greatcell Solar Materials Pty Ltd.
Greatcell Solar is a registered trademark of Greatcell Solar

Pictograms

Exclamation markEnvironment

Signal Word

Warning

Hazard Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1 - Eye Irrit. 2 - Skin Irrit. 2

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

174.2 °F

Flash Point(C)

79 °C


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Metin Uz et al.
ACS applied materials & interfaces, 12(11), 13529-13539 (2020-02-23)
In this study, a simple microfluidic method, which can be universally applied to different rigid or flexible substrates, was developed to fabricate high-resolution, conductive, two-dimensional and three-dimensional microstructured graphene-based electronic circuits. The method involves controlled and selective filling of microchannels

Articles

The ability to pattern conductive electrodes is technologically relevant for several applications, including photovolatics, displays, sensors, and biomedical devices.

Dr. Chan and researchers highlight flexible transistors are the building blocks of next-generation soft electronics. Small molecular weight organic semiconductors are among the most promising candidates for flexible transistor applications.

Dye-sensitized solar cells (DSCs) are 3rd generation solar cells combining the promise of high efficiency with low production costs.

Professor Tokito and Professor Takeda share their new materials, device architecture design principles, and performance optimization protocols for printed and solution-processed, low-cost, highly flexible, organic electronic devices.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service