Merck
CN
All Photos(1)

Documents

808121

Sigma-Aldrich

Expandable Graphite

flakes

Sign Into View Organizational & Contract Pricing

Select a Size

Change View
Synonym(s):
Graphite intercalation compound, Intumescent flake graphite
Linear Formula:
C24(HSO4)(H2SO4)2
NACRES:
NA.23

description

Expansion Ratio (X:1): 270 to 325

Quality Level

form

flakes

particle size

+50 mesh (>300μ, ≥75% minimum)

pH

5-10

solubility

water: insoluble

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
763705808091900561
Sigma-Aldrich

Sigma-Aldrich

808121

Expandable Graphite

Graphene oxide 2 mg/mL, dispersion in H2O

Sigma-Aldrich

763705

Graphene oxide

Graphite flakes, 99% Carbon, −100 mesh (≥80%), natural

Sigma-Aldrich

808091

Graphite

Graphene powder, electrical conductivity >103 S/m

Sigma-Aldrich

900561

Graphene

form

flakes

form

dispersion in H2O

form

flakes

form

powder

particle size

+50 mesh (>300μ, ≥75% minimum)

particle size

-

particle size

-

particle size

-

pH

5-10

pH

-

pH

-

pH

-

solubility

water: insoluble

solubility

-

solubility

-

solubility

-

Quality Level

100

Quality Level

-

Quality Level

100

Quality Level

100

General description

Expandable graphite is a synthesized intercalation compound of graphite that expands or exfoliates when heated. This material is manufactured by treating flake graphite with various intercalation reagents that migrate between the graphene layers in a graphite crystal and remain as stable species.
If exposed to a rapid increase in temperature, these intercalation compounds decompose into gaseous products, which results in high inter-graphene layer pressure. This pressure develops enough force to push apart graphite basal planes in the “c” axis direction. The result is an increase in the volume of the graphite of up to 300 times, a lowering of bulk density, and approximately a 10-fold increase in surface area.

Application

  • Graphene precursor.
  • Inorganic source of carbon.
  • Filler.
  • Thermal additive.
  • Fire retardant additive.
  • Casting powders.
  • Plastic additive.
  • Rubber additive.
  • EMF absorber.
  • Milling and sieving.
  • Bulk loading, unloading.
  • Base material for gaskets and seals.
  • Coatings.

Pictograms

Health hazard

Signal Word

Warning

Hazard Statements

Precautionary Statements

Hazard Classifications

STOT RE 2 Inhalation

Target Organs

Lungs

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Slide 1 of 5

1 of 5

Siegfried Eigler
Chemical communications (Cambridge, England), 51(15), 3162-3165 (2015-01-22)
Graphite sulphate is used as a precursor to graphene for the first time. The positively charged graphene layers react with water to yield a processable graphene derivative. The unprecedented low density of defects is determined to be 0.06% on average
Electrochemical reactivation of expanded graphite electrodes covered by oligomeric products of phenol electrooxidation.
Krawczyk P, and Skowronski, JM.
Electrochimica Acta, 79, 202-209 (2012)
Nicolas R Tanguy et al.
ChemSusChem, 14(4), 1057-1067 (2020-11-28)
The increasing demand for wearable electronics has driven the development of supercapacitor electrode materials toward enhanced energy density, while being mechanically strong, flexible, as well as environmentally friendly and low-cost. Taking advantage of faradaic reaction of quinone groups in natural
Ayrat M Dimiev et al.
ACS nano, 6(9), 7842-7849 (2012-08-14)
Graphite intercalation compounds (GICs) can be considered stacks of individual doped graphene layers. Here we demonstrate a reversible formation of sulfuric acid-based GICs using ammonium persulfate as the chemical oxidizing agent. No covalent chemical oxidation leading to the formation of

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service