Skip to Content
Merck
CN

808237

Aluminum-doped zinc oxide nanoparticle ink

2.5 wt. %, viscosity 2.2 cP, work function -3.9 eV

Synonym(s):

AZO ink, Al-doped ZnO dispersion, Al-dopend ZnO suspension, Al:ZnO ink, Avantama N-21X, Nanograde N-21X

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

NACRES:
NA.23
UNSPSC Code:
12352103
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Aluminum-doped zinc oxide nanoparticle ink, 2.5 wt. %, viscosity 2.2 cP, work function -3.9 eV

form

dispersion

concentration

2.5 wt. % (crystalline Al doped ZnO (3.15 mol% Al) in mixture of alcohols)

work function

-3.7--4.1 eV

particle size

8-16 nm

viscosity

1.7-2.7 cP

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

Al-doped ZnO nanoparticle ink is for spin coating and doctor blading for the use as electron transport layer in printed electronics. Al-doped ZnO nanoparticle ink is universally applicable in normal and inverted architecture with performance comparable to evaporated calcium.

Legal Information

Product of Avantama Ltd.

Preparation Note

  • Storage: In dark at room temperature.
  • Prior to application: Shake, ultrasonicate with sonic horn and (optionally) filter through 0.45μm PTFE filter.
  • Post-treatment: Annealing of deposited Al doped ZnO films at 80°C - 120°C.

signalword

Danger

Hazard Classifications

Aquatic Chronic 2 - Eye Irrit. 2 - Flam. Liq. 2 - STOT SE 3

target_organs

Central nervous system

Storage Class

3 - Flammable liquids

wgk

WGK 2

flash_point_f

60.8 °F

flash_point_c

16 °C

Regulatory Information

危险化学品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Articles

Progress in solution-processed functional materials leads to thin-film optoelectronic devices for industrial and consumer electronics.

Professors Tokito and Takeda share design principles and optimization protocols for organic electronic devices, focusing on flexibility and low cost.

Find advantages of inorganic interface layer inks for organic electronic & other applications.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service