Merck
CN
All Photos(1)

Documents

Safety Information

900804

Sigma-Aldrich

1-Butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide

≥99%, H2O <500 ppm

Sign Into View Organizational & Contract Pricing

Synonym(s):
1-Butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)amide, 1-Butyl-2,3-dimethylimidazolium bistriflamide
Empirical Formula (Hill Notation):
C11H17F6N3O4S2
CAS Number:
Molecular Weight:
433.39
MDL number:

Quality Level

Assay

≥99%

form

liquid

composition

H2O, <500 ppm

impurities

≤500 ppm H2O

bp

430 °C (decomp(lit.))

mp

-76 °C (lit.)

density

1.4059 g/cm3

application(s)

battery manufacturing

InChI

1S/C9H17N2.C2F6NO4S2/c1-4-5-6-11-8-7-10(3)9(11)2;3-1(4,5)14(10,11)9-15(12,13)2(6,7)8/h7-8H,4-6H2,1-3H3;/q+1;-1

InChI key

UCCKRVYTJPMHRO-UHFFFAOYSA-N

Related Categories

Application

Ionic liquids (ILs) are molten salts with melting points lower than 100 °C. They usually consist of pair of organic cation and anion. ILs exhibit unique properties such as non-volatility, high thermal stability, and high ionic conductivity and find applications as electrolytes in lithium/sodium ion batteries and dye-sensitized solar cells. They are also used as media for synthesis of conducting polymers and intercalation electrode materials.

Pictograms

CorrosionSkull and crossbones

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 3 Oral - Eye Dam. 1

Storage Class Code

6.1C - Combustible, acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 3

Flash Point(F)

230.0 °F

Flash Point(C)

110 °C

Regulatory Information

新产品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Ionic liquids and their solid-state analogues as materials for energy generation and storage.
MacFarlane DR, et al.
Nature Reviews. Materials, 1, 15005-15005 (2016)
Dandan Han et al.
Molecules (Basel, Switzerland), 15(4), 2405-2426 (2010-04-30)
Ionic liquids (ILs) have been applied in different areas of separation, such as ionic liquid supported membranes, as mobile phase additives and surface-bonded stationary phases in chromatography separations and as the extraction solvent in sample preparations, because they can be
Masayoshi Watanabe et al.
Chemical reviews, 117(10), 7190-7239 (2017-01-14)
Ionic liquids (ILs) are liquids consisting entirely of ions and can be further defined as molten salts having melting points lower than 100 °C. One of the most important research areas for IL utilization is undoubtedly their energy application, especially

Articles

Dr. Sun reviews the recent advances in solid-state rechargeable batteries and cover the fundamentals of solid electrolytes in solid-state batteries, the theory of ion conduction, and the structures and electrochemical processes of solid-state Li batteries.

Here, we present a short review of ionic liquid electrolytes used in state-of-the-art rechargeable batteries including high performance and low-cost aluminum batteries, non-flammable Li-based batteries, and high-cycling and stable dual-graphite batteries. We also outline the key issues explored so as to identify the future direction of IL development.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service