Skip to Content
Merck
CN

932221

1,4,5,8-Naphthalenetetracarboxylic dianhydride

≥98%

Synonym(s):

6,13-Dioxatetracyclo[6.6.2.04,16.011,15]hexadeca-1(15),2,4(16),8,10-pentaene-5,7,12,14-tetrone, Isochromeno[6,5,4-def]isochromene-1,3,6,8-tetraone, NTDA, Naphthalene-1,4,5,8-tetracarboxylic dianhydride, NTCDA

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C14H4O6
CAS Number:
Molecular Weight:
268.18
NACRES:
NA.23
UNSPSC Code:
12352005
Beilstein/REAXYS Number:
272788
MDL number:
Assay:
≥98 (elemental analysis)
≥98%
Grade:
sublimed grade
Solubility:
dichloromethane: soluble
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

1,4,5,8-Naphthalenetetracarboxylic dianhydride, ≥98%

SMILES string

O=C1OC(=O)c2ccc3C(=O)OC(=O)c4ccc1c2c34

InChI key

YTVNOVQHSGMMOV-UHFFFAOYSA-N

InChI

1S/C14H4O6/c15-11-5-1-2-6-10-8(14(18)20-12(6)16)4-3-7(9(5)10)13(17)19-11/h1-4H

grade

sublimed grade

assay

≥98 (elemental analysis)
≥98%

loss

0.5% TGA, > 270 °C (weight loss)

mp

>300 °C (lit.)

solubility

dichloromethane: soluble

fluorescence

λem 392 nm±10 nm in dichloromethane

λ

in dichloromethane

UV absorption

λ: 366 nm±5 nm Amax

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

1,4,5,8-Naphthalenetetracarboxylic dianhydride, also known as NTCDA or NTCDA-DA, is commonly used as a building block or precursor for the synthesis of organic semiconducting materials. These materials can be employed in various organic electronic devices, including organic field-effect transistors (OFETs), organic photovoltaic (OPV) devices and organic photodetectors. NTCDA can be utilized as an electron-accepting material or an anchoring unit in studies on dye-sensitized solar cells (DSSCs) for enhancing the photovoltaic performance of the device.
1,4,5,8-Naphthalenetetracarboxylic dianhydride, also known as NTDA or NTCDA, is an organic compound related to naphthalene. NTDA is most commonly used as a precursor to naphthalenediimides (NDIs) (such as napthalenetetracarboxylic diimide), which has many uses, especially in energy harvesting and storage. NTCDA is used in electrode interface for organic photovoltaics, selective adsorption and to fabricate copolyimides to use in membranes for gas separation and for enhanced proton exchange membranes in fuel cells.

pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1 - STOT SE 3

target_organs

Respiratory system

Storage Class

11 - Combustible Solids

wgk

WGK 2

flash_point_f

Not applicable

flash_point_c

Not applicable

Regulatory Information

新产品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

A Crystalline Polyimide Porous Organic Framework for Selective Adsorption of Acetylene over Ethylene
Jiang, L. et al.
Journal of the American Chemical Society, 140, 15724-15730 (2018)
Reduction of Series Resistance in Organic Photovoltaic Cells Using a Metal-Doped Layer
Nakayama Ken-ichi, et al.
Japanese Journal of Applied Physics, 44, 633?635-633?635 (2005)
Chemically tethered functionalized graphene oxide based novel sulfonated polyimide composite for polymer electrolyte membrane
Rehman, W. et al.
Journal of Polymer Research, 26, 1-14 (2019)
Novel Sulfonated Co-poly(ether imide)s Containing Trifluoromethyl, Fluorenyl and Hydroxyl Groups for Enhanced Proton Exchange Membrane Properties: Application in Microbial Fuel Cell.
Kumar, A.G. et al.
ACS Applied Materials & Interfaces, 10, 14803-14817 (2018)
Six-membered ring copolyimides as novel high performance membrane materials for gas separations
Qian, Kai, et al.
Materials Today Communications, 14, 254-262 (2018)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service