Merck
CN
All Photos(2)

Documents

Safety Information

932418

Sigma-Aldrich

Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]

new
Sign Into View Organizational & Contract Pricing

Synonym(s):
PTAA, Poly[[(2,4,6-trimethylphenyl)imino][1,1′-biphenyl]-4,4′-diyl]
Linear Formula:
(C21H19N)n
CAS Number:

description

μh ≈ 10-2 to 10−3 cm2 V−1 s−1

Quality Level

mol wt

Mw 20,000-100,000 by GPC

solubility

chlorobenzene: soluble
chloroform: soluble
toluene: soluble

λmax

388 nm±5 nm in dichloromethane

fluorescence

λex 414-434 nm in dichloromethane

Orbital energy

HOMO 5.3 eV 
LUMO 2.3 eV 

Related Categories

Application

Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], also known as PTAA, is a popular a poly(triaryl amine) semiconductor with a μh around 10-2 to 10−3 cm2 V−1 s−1 that has been explored in efficient hysteresis-free photovoltaics and self-assembled monolayers materials.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Regulatory Information

新产品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Deying Luo et al.
Science (New York, N.Y.), 360(6396), 1442-1446 (2018-06-30)
The highest power conversion efficiencies (PCEs) reported for perovskite solar cells (PSCs) with inverted planar structures are still inferior to those of PSCs with regular structures, mainly because of lower open-circuit voltages (Voc). Here we report a strategy to reduce
Yohan Ko et al.
ACS applied materials & interfaces, 10(14), 11633-11641 (2018-03-21)
Organometallic halide perovskite solar cells (PSCs) have unique photovoltaic properties for use in next-generation solar energy harvesting systems. The highest efficiency of PSCs reached 22.1% on a laboratory scale of <0.1 cm2 device area. Thus, scaling up is the next
Amran Al-Ashouri et al.
Science (New York, N.Y.), 370(6522), 1300-1309 (2020-12-12)
Tandem solar cells that pair silicon with a metal halide perovskite are a promising option for surpassing the single-cell efficiency limit. We report a monolithic perovskite/silicon tandem with a certified power conversion efficiency of 29.15%. The perovskite absorber, with a
Woon Seok Yang et al.
Science (New York, N.Y.), 348(6240), 1234-1237 (2015-05-23)
The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and
Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules.
Deng Y, et al.
Nature Energy, 3, 560-566 (2018)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service