Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Empirical Formula (Hill Notation):
C5H5NO2 · HCl
CAS Number:
Molecular Weight:
147.56
NACRES:
NA.22
PubChem Substance ID:
UNSPSC Code:
12352100
EC Number:
233-777-1
MDL number:
Assay:
97%
Form:
solid
InChI key
HNWWAWKDVFVJRG-UHFFFAOYSA-N
InChI
1S/C5H5NO2.ClH/c7-4-2-1-3-5(8)6-4;/h1-3H,(H2,6,7,8);1H
SMILES string
Cl[H].Oc1cccc(O)n1
assay
97%
form
solid
mp
206-208 °C (dec.) (lit.)
Quality Level
Related Categories
signalword
Warning
hcodes
Hazard Classifications
Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3
target_organs
Respiratory system
Storage Class
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Paula Sachelaru et al.
Journal of bacteriology, 187(24), 8516-8519 (2005-12-03)
The enzyme catalyzing the hydrolytic cleavage of 2,6-dihydroxypseudooxynicotine to 2,6-dihydroxypyridine and gamma-N-methylaminobutyrate was found to be encoded on pAO1 of Arthrobacter nicotinovorans. The new enzyme answers an old question about nicotine catabolism and may be the first C--C bond hydrolase
M Fukushima et al.
Gan to kagaku ryoho. Cancer & chemotherapy, 23(6), 721-731 (1996-05-01)
Possible pathways of intracellular phosphorylation of 5-fluorouracil (5-FU) in human cancer cells were investigated in vitro and in vivo. We used two inhibitors which regulate the anabolism of 5-FU for the purpose of elucidation of its pathways; one is oxonic
H Stopper et al.
Biochemical and biophysical research communications, 203(2), 1124-1130 (1994-09-15)
The rate limiting step in 5-fluorouracil catabolism is catalyzed by the enzyme dihydropyrimidine dehydrogenase. Since degradation of 5-fluorouracil decreases its efficacy in chemotherapy, the inhibition of its catabolism is a promising tool. We investigated the formation of micronuclei in vitro
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service