Skip to Content
Merck
CN

W316504

trans-2-Heptenal

≥95%, stabilized, FG

Synonym(s):

(E)-2-Heptenal

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
CH3(CH2)3CH=CHCHO
CAS Number:
Molecular Weight:
112.17
FEMA Number:
3165
Council of Europe no.:
730
UNSPSC Code:
12164502
PubChem Substance ID:
Flavis number:
5.150
EC Number:
242-608-0
NACRES:
NA.21
MDL number:
Beilstein/REAXYS Number:
1700822
Organoleptic:
apple; fatty; green; green; spicy
Grade:
FG
Halal
Kosher
Biological source:
synthetic
Food allergen:
no known allergens
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

trans-2-Heptenal, ≥95%, stabilized, FG

SMILES string

[H]C(=O)\C([H])=C(/[H])CCCC

InChI

1S/C7H12O/c1-2-3-4-5-6-7-8/h5-7H,2-4H2,1H3/b6-5+

InChI key

NDFKTBCGKNOHPJ-AATRIKPKSA-N

biological source

synthetic

grade

FG
Halal
Kosher

reg. compliance

EU Regulation 1334/2008 & 178/2002
FDA 21 CFR 110

vapor density

>1 (vs air)

assay

≥95%

contains

alpha-tocopherol, synthetic as stabilizer

refractive index

n20/D 1.450 (lit.)

bp

90-91 °C/50 mmHg (lit.)

density

0.857 g/mL at 25 °C (lit.)

application(s)

flavors and fragrances

documentation

see Safety & Documentation for available documents

food allergen

no known allergens

organoleptic

apple; fatty; green; green; spicy

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application


  • Studies on the reaction of trans-2-heptenal with peanut proteins: This research examines the interactions between trans-2-heptenal and peanut proteins, providing significant insights into food chemistry and the stability of flavor compounds in food products. The study reveals potential implications for biochemists interested in food allergenicity and protein-aldehyde interactions (Globisch et al., 2014).

  • An experimental study of the gas-phase reactions of NO3 radicals with a series of unsaturated aldehydes: trans-2-hexenal, trans-2-heptenal, and trans-2-octenal: This paper explores the reactivity of trans-2-heptenal with NO3 radicals in the gas phase, contributing to a better understanding of atmospheric chemistry and the environmental behavior of volatile organic compounds. Such information is crucial for biochemists studying the environmental impacts of organic compounds (Kerdouci et al., 2012).

General description

trans-2-Heptenal is a volatile flavor constituent identified in heated butter and tomato.

pictograms

FlameSkull and crossbones

signalword

Danger

Hazard Classifications

Acute Tox. 3 Dermal - Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Flam. Liq. 3 - Skin Sens. 1

Storage Class

3 - Flammable liquids

wgk

WGK 3

flash_point_f

123.8 °F - closed cup

flash_point_c

51 °C - closed cup

ppe

Eyeshields, Faceshields, Gloves, type ABEK (EN14387) respirator filter

Regulatory Information

危险化学品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Identification of loci affecting flavour volatile emissions in tomato fruits.
Tieman DM, et al.
Journal of Experimental Botany, 57(4), 887-896 (2006)
Charlotte L Steffensen et al.
Journal of agricultural and food chemistry, 50(25), 7392-7395 (2002-11-28)
In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to
Isolation and identification of headspace volatiles formed in heated butter.
Lee SR, et al.
Journal of Agricultural and Food Chemistry, 39(11), 1972-1975 (1991)
Richard Gminski et al.
Toxicology letters, 196(1), 33-41 (2010-04-07)
Due to the massive reduction of air-change rates in modern, energy-saving houses and dwellings, the contribution of volatile organic compound (VOCs) emissions from wood-based materials to indoor air quality has become increasingly important. To evaluate toxicity of VOC mixtures typically
Yu-Ning Hu et al.
Talanta, 206, 120172-120172 (2019-09-14)
Derivatization is frequently used in liquid chromatography-mass spectrometry (LC-MS) to improve the ionization characteristics of analytes, and facilitate their structural elucidation and quantification. However, the off-line derivatization process usually requires more analysis time. Therefore, the present work develops a novel

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service