Merck
CN
All Photos(1)

Documents

Safety Information

1.16883

Millipore

Fractogel® EMD DEAE (M)

Sign Into View Organizational & Contract Pricing

Synonym(s):
Fractogel® EMD DEAE (M)

Quality Level

ligand

diethylaminoethyl

description

weak anion exchanger, suspension in 20% ethanol and 150 mM NaCl (40-90 µm)

sterility

sterile (Caustic Stable)

product line

Fractogel®

form

resin

parameter

170 cm/hr flow rate
8 bar max. pressure

matrix active group

methacrylate

mean particle size

40-90 μm

capacity

100 mg binding capacity (BSA/mg of resin)

transition temp

flash point 35 °C (calculated)

density

1.430 g/cm3

bulk density

1000 kg/m3

application(s)

gene therapy
mAb
vaccine development

separation technique

weak anion exchange

storage temp.

2-30°C

Looking for similar products? Visit Product Comparison Guide

General description

Weak anion exchange Fractogel® resin featuring the tentacle technology, for purification of acidic and neutral proteins and peptides from multiple sources, pDNA purification, DNA, RNA, and endotoxin removal, large viruses purification, vaccine purification, blood fractionation, and more

Features and Benefits

Fractogel® EMD DEAE (M) enables:

  • Excellent binding to large viruses and plasmid DNA
  • Homogenous binding with high selectivity and purity
  • Lower elution volumes for the highest purity levels
  • Compatibility with 2.5 % (v/v) aqueous benzyl alcohol containing 150 mM NaCl storage solution


Due to the titration behavior, the ion exchange capacity can be used from pH 2 to pH 9.5. The separation of proteins is based on reversible electrostatic interactions between the negatively charged regions of the proteins′ surface and the support. Proteins are retained efficiently on Fractogel® EMD DEAE when the pH of the buffer is about 1 unit above their isoelectric points (pl).

The strength of the binding depends on the following:
  • the buffer system
  • pH value of the buffer which determines the surface charge of the protein
  • the degree of the ionization of the functional groups of the exchanger
  • the concentration of the counter ions
  • the charge density on the support (protein binding capacity)

Packaging

  • 1.16883.0100: Fractogel® EMD DEAE (M) Resin 100ml
  • 1.16883.0010: Fractogel® EMD DEAE (M) Resin 10ml
  • 1.16883.0500: Fractogel® EMD DEAE (M) Resin 500ml
  • 1.16883.5000: Fractogel® EMD DEAE (M) Resin 5L

Plastic bottle

Analysis Note

Appearance: Milky turbid suspension,free from impurities (foreign particles)
Microscopic evaluation: Uniform spherical particles,no agglomerates,no fines
Extractable matter (water): ≤ 0.03 %
Cerium: ≤ 1 µg/g
Pressure drop(column: ID=1.6 cm, L=10 cm at 5 ml/min): ≤ 1 bar
Particle size (d10): 37 - 45 µm
Particle size (d50): 48 - 60 µm
Particle size (d90): 63 - 77 µm
Colony forming units (TAMC + TYMC): ≤ 100 CFU/ml
Endotoxins: ≤ 1.00 EU/ml
Protein binding capacity (bovine serum albumin): 80 - 120 mg/ml
Functional test (b:a): ≤ 0.25
Functional test: Separation of conalbumin and human serum albumin

Legal Information

FRACTOGEL is a registered trademark of Merck KGaA, Darmstadt, Germany

Pictograms

Flame

Signal Word

Warning

Hazard Statements

Hazard Classifications

Flam. Liq. 3

Storage Class Code

3 - Flammable liquids

WGK

WGK 3

Flash Point(F)

95.0 °F

Flash Point(C)

35 °C

Regulatory Information

危险化学品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Articles

See case study examples of how to optimize chromatographic purification of plasmid DNA for Biopharmaceutical Applications.

Influenza vaccines are commonly made using egg-based and cell-based manufacturing strategies. Find step-by-step information on the manufacturing process for each method.

A custom-designed cost model is used to explore the economics of vaccine manufacturing across several different modalities including mRNA. The model enables greater process understanding, simulates bottlenecks, and helps to optimize production efficiency.

Learn more one the attenuated viral vaccines manufacturing process: cell culture, clarification, nuclease treatment, chromatography, and sterile filtration.

See All

Related Content

A relatively templated manufacturing process can be used to produce live vector vaccines. Challenges exist, however, and include yield loss due to sterile filtration, vector aggregation and scaling adherent cultures. Learn all about this core platform technology and how expertise—empowered by collaboration— can overcome manufacturing challenges.

Manufacturing viral vaccines is complex and there is no templated approach. Each process must be tailored to the shape, size, nature, physico-chemical behavior, stability, and host specificity of the virus. Learn all about this core platform technology and how expertise—empowered by collaboration— can overcome manufacturing challenges.

This technical article breaks down the adenovirus vaccine manufacturing process and provides a case study on developing an accelerated and cost-effective single-use adenoviral vector vaccine.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service