Select a Size
About This Item
technique(s)
immunocytochemistry: suitable
immunofluorescence: suitable
Quality Level
detection method
fluorometric
General description
Oxidative stress has been found to play a key role in a number of pathological disorders. These affects appear to be mediated by reactive oxygen species (ROS) which cause modifications to proteins, lipids, and DNA. In the case of proteins the ROS primarily cause carbonyl derivatives on amino acid sidechains affecting their enzymatic and biochemical functionality. Not surprisingly, carbonyl formation has become an important biomarker for oxidative stress.
Reactive oxygen species (ROS) have been implicated in pathological processes including cancer, apoptosis, aging, neurodegenerative diseases, chronic inflammatory diseases, pulmonary diseases, and cardiovascular diseases (for reviews, see ref. 1-4).
Living organisms are continually exposed to potentially harmful oxygen free radicals that are generated thru normal cellular functions as well as from environmental factors (1, 5-7). Yet, these reactive molecules are mitigated by the presence of antioxidants and therefore organisms exist with a delicate balance between oxidants and antioxidants (7-9). During times of oxidative stress there is an imbalance in favor of the oxidants. The end result of which is that free radicals are able to attack and modify subcellular components including nucleic acids, lipids and proteins (7, 10-12). In some cases, cells respond to the oxidative stimuli and allow the organism to adapt to the oxidative stress (13-15).
Proteins are one of the major targets of oxygen free radicals and other reactive species
Not surprisingly, carbonyl modification of proteins has become a key biomarker for the identification of oxidative stress. To assist in these research efforts Millipore now offers the OxyICC kit which contains the chemical and immunological reagents necessary to detect the carbonyl groups using fluorescent immunocytochemistry. The test method involves chemical derivatization of protein carbonyl groups with 2,4-dinitrophenylhydrazine (DNPH). This chemical reaction results in proteins being covalently coupled to DNP at their carbonyl sites. The DNP-derivatized proteins are then detected using biotinylated antibodies that are specifically reactive for the DNP moiety. Subsequent incubation with fluorescently conjugated streptavidin enables detection using fluorescence microscopy. The amount of fluorescence detected is correlated to the extent of oxidative stress that the cell was subjected to.
Application
- Plate cells normal density (typically add ~30k per well of an 8 well chamber slide).
- Incubate overnight
- Remove media
- Add fresh media containing H2O2 (500uM treatment for 30 minutes or 50uM treatment overnight)
- After appropriate incubation wash cells gently 2X with PBS
- Fix cells with ice cold methanol
- Continue with the OxyICC protocol.
Preparation Note
Other Notes
Legal Information
Disclaimer
Storage Class Code
10 - Combustible liquids
Regulatory Information
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Related Content
"Aging: getting older, exhibiting the signs of age, the decline in the physical (and mental) well-being over time, leading to death. Since the beginning of time, man has been obsessed with trying to slow down, stop, or even reverse the signs of aging. Many have gone as far as experimenting with nutritional regimens, eccentric exercises, fantastic rituals, and naturally occurring or synthetic wonder-elements to evade the signs of normal aging. Biologically speaking, what is aging? And what does the latest research tell us about the possibility of discovering the elusive “fountain of youth”? Many advances in our understanding of aging have come from systematic scientific research, and perhaps it holds the key to immortality. Scientifically, aging can be defined as a systems-wide decline in organismal function that occurs over time. This decline occurs as a result of numerous events in the organism, and these events can be classified into nine “hallmarks” of aging, as proposed by López-Otin et al. (2013). Several of the pathologies associated with aging are a direct result of these events going to extremes and may also involve aberrant activation of proliferation signals or hyperactivity. The hallmarks of aging have been defined based on their fulfillment of specific aging related criteria, such as manifestation during normal aging, acceleration of aging if experimentally induced or aggravated, and retardation of aging if prevented or blocked, resulting in increased lifespan. The nine hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. The biological processes underlying aging are complex. By understanding the hallmarks in greater detail, we can get closer to developing intervention strategies that can make the aging process less of a decline, and more of a recline."
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service