Skip to Content
Merck
CN

10102547001

Roche

AMP-PNP

Adenylyl-imidodiphosphate

Synonym(s):

Adenosine 5′-(β,γ-imido)triphosphate lithium salt hydrate, β,γ-Imidoadenosine 5′-triphosphate lithium salt hydrate, AMP-PNP, ATP[β,γ-NH], Adenylyl imidodiphosphate lithium salt hydrate, App(NH)p

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C10H17N6O12P3 · xLi+ · yH2O
CAS Number:
Molecular Weight:
506.20 (free acid basis)
UNSPSC Code:
12352204
Beilstein/REAXYS Number:
6047109
Form:
powder
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

InChI key

PVKSNHVPLWYQGJ-KQYNXXCUSA-N

InChI

1S/C10H17N6O12P3/c11-8-5-9(13-2-12-8)16(3-14-5)10-7(18)6(17)4(27-10)1-26-31(24,25)28-30(22,23)15-29(19,20)21/h2-4,6-7,10,17-18H,1H2,(H,24,25)(H2,11,12,13)(H4,15,19,20,21,22,23)/t4-,6-,7-,10-/m1/s1

SMILES string

[Li+].[Li+].[Li+].[Li+].[H]O[H].Nc1ncnc2n(cnc12)[C@@H]3O[C@H](COP([O-])(=O)OP([O-])(=O)NP([O-])([O-])=O)[C@@H](O)[C@H]3O

form

powder

mol wt

Mr 506.2 (ANP-PNP), Mr 529.9 (AMP-PNP-Li4)

packaging

pkg of 25 mg

manufacturer/tradename

Roche

General description

AMP-PNP (adenylyl-imidodiphosphate) is a non-hydrolysable analogue of ATP. It inhibits fast axonal transport and facilitates the interaction between membranous organelles and microtubules.
AMP-PNP(adenylyl-imidodiphosphate) is an artificial substrate of enzyme, adenylate cyclase. Adenylate cyclase helps to hydrolyze adenylyl-imidodiphosphate slowly than ATP.

Application

AMP-PNP has been used in the preparation of nucleotide solutions, two-motor fluorescence assay, preparation of flow-cells with kinesin and cascade binding assays.
AMP-PNP is a competitive inhibitor of most ATP-dependent systems. A good substrate for enzymes hydrolyzing between the α- and β-phosphorus atom, yet is resistant to enzymes cleaving between the β- and γ-phosphorus atom. Substrate of snake venom phosphodiesterase and adenylate cyclase.
AMP-PNP has been used for two-motor fluorescence assay.

Features and Benefits

Contents
88% AMP-PNP (from N), 4.5% lithium, 6% water

Preparation Note

Store at -15–-25 °C. (Store dry!)

Analysis Note

Contaminants: ≤1.5% Pi , <0.1% ATP (enzymatically)

Other Notes

For life science research only. Not for use in diagnostic procedures.

Storage Class

11 - Combustible Solids

wgk

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

High accuracy measurements of nanometer-scale distances between fluorophores at the single-molecule level
Niekamp S, et al.
bioRxiv, 234740-234740 (2017)
Nucleotide dependence of the dimerization of ATP binding cassette nucleotide binding domains
Fendley GA, et al.
Biochemical and Biophysical Research Communications, 480(2), 268-272 (2016)
Laurel M Pegram et al.
Proceedings of the National Academy of Sciences of the United States of America, 116(31), 15463-15468 (2019-07-18)
Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and
S T Brady
Nature, 317(6032), 73-75 (1985-09-05)
Identification of the ATPase involved in fast axonal transport of membranous organelles has proven difficult. Myosin and dynein, other ATPases known to be involved in cell motility, have properties that are inconsistent with the established properties of fast axonal transport
Cristina Olivieri et al.
eLife, 9 (2020-04-28)
In the nucleus, the spatiotemporal regulation of the catalytic subunit of cAMP-dependent protein kinase A (PKA-C) is orchestrated by an intrinsically disordered protein kinase inhibitor, PKI, which recruits the CRM1/RanGTP nuclear exporting complex. How the PKA-C/PKI complex assembles and recognizes

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service