Skip to Content
Merck
CN

17-0090

Sigma-Aldrich

Kerosene

CP

Sign Into View Organizational & Contract Pricing

Select a Size


About This Item

CAS Number:
EC Number:
MDL number:
UNSPSC Code:
15101502
Grade:
CP
Bp:
190-250 °C (lit.)
Vapor pressure:
0.23 mmHg ( 20 °C)
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

grade

CP

vapor density

4.5 (vs air)

vapor pressure

0.23 mmHg ( 20 °C)

form

liquid

autoignition temp.

442 °F

expl. lim.

5 %

availability

available only in Japan

dilution

(for analytical testing)

bp

190-250 °C (lit.)

density

0.8 g/mL at 25 °C (lit.)

Looking for similar products? Visit Product Comparison Guide

Signal Word

Danger

Hazard Statements

Hazard Classifications

Aquatic Chronic 2 - Asp. Tox. 1 - Skin Irrit. 2 - STOT SE 3

Target Organs

Central nervous system

Storage Class Code

3 - Flammable liquids

WGK

WGK 2

Flash Point(F)

179.6 °F - closed cup

Flash Point(C)

82 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Information

新产品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

It looks like we've run into a problem, but you can still download Certificates of Analysis from our Documents section.

If you need assistance, please contact Customer Support

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

J A Namocatcat et al.
Journal of contaminant hydrology, 67(1-4), 177-194 (2003-11-11)
Evolution of trimethylbenzoic acids in the KC-135 aquifer at the former Wurtsmith Air Force Base (WAFB), Oscoda, MI was examined to determine the functionality of trimethylbenzoic acids as key metabolite signatures in the biogeochemical evolution of an aquifer contaminated with
Kent L Gee et al.
The Journal of the Acoustical Society of America, 123(6), 4082-4093 (2008-06-10)
To address the question of the role of nonlinear effects in the propagation of noise radiated by high-power jet aircraft, extensive measurements were made of the F-22A Raptor during static engine run-ups. Data were acquired at low-, intermediate-, and high-thrust
Gerardo Ramos et al.
Toxicological sciences : an official journal of the Society of Toxicology, 100(2), 415-422 (2007-09-25)
Dermal exposure to military (JP-8) and/or commercial (Jet-A) jet fuel suppresses cell-mediated immune reactions. Immune regulatory cytokines and biological modifiers, including platelet activating factor (PAF), prostaglandin E(2), and interleukin-10, have been implicated in the pathway of events leading to immune
Cynthia M Mann et al.
Journal of toxicology and environmental health. Part A, 71(8), 495-504 (2008-03-14)
The potential for jet fuel to modulate immune functions has been reported in mice following dermal, inhalation, and oral routes of exposure; however, a functional evaluation of the immune system in rats following jet fuel exposure has not been conducted.
Susan P Proctor et al.
Neurotoxicology, 32(6), 799-808 (2011-08-10)
One of the most prevalent workplace chemical exposures historically and currently confronting the global military and civilian workforce is jet propellant (JP) fuel (e.g., JP4, JP5, JP8, jet A1), a complex mixture of numerous hydrocarbon compounds and additives. To date

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service