Skip to Content
Merck
CN

146153

Silicone oil

for melting point and boiling point apparatuses

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
[-Si(CH3)2O-]n
CAS Number:
UNSPSC Code:
41100000
NACRES:
NB.77
MDL number:
Bp:
>140 °C/0.002 mmHg (lit.)
Vapor pressure:
<5 mmHg ( 25 °C)
5 mmHg ( 20 °C)
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Silicone oil, for melting point and boiling point apparatuses

vapor density

>1 (vs air)

vapor pressure

<5 mmHg ( 25 °C)
5 mmHg ( 20 °C)

type

for melting point and boiling point apparatuses

parameter

−40-350 °F temp. range (−40-175 °C)

refractive index

n20/D 1.403 (lit.)

viscosity

45.0-55.0(25 °C)

bp

>140 °C/0.002 mmHg (lit.)

density

0.963 g/mL at 25 °C

Looking for similar products? Visit Product Comparison Guide

Application

Silicone oil has been used:
  • for melting-point and boiling-point apparatus
  • in membrane contactors to impregnate fibers
  • on rheometer samples (chicken skin and bovine gelatin) to prevent evaporation during heating using temperature sweeps and frequency sweeps

Biochem/physiol Actions

Silicone oil is suitable for use in under-oil screenings of proteins.

Features and Benefits

  • High viscosity
  • Low water solubility
  • Low vapor pressure

Storage Class

10 - Combustible liquids

wgk

WGK 1

flash_point_f

214.0 °F - closed cup

flash_point_c

101.1 °C - closed cup

ppe

Eyeshields, Gloves


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Sara Sanders et al.
PloS one, 13(5), e0197638-e0197638 (2018-05-18)
The in vivo microenvironment of bacterial pathogens is often characterized by nutrient limitation. Consequently, conventional rich in vitro culture conditions used widely to evaluate antibacterial agents are often poorly predictive of in vivo activity, especially for agents targeting metabolic pathways.
Christian Scholz et al.
Physical review letters, 109(26), 264504-264504 (2013-02-02)
We study the permeability of quasi-two-dimensional porous structures of randomly placed overlapping monodisperse circular and elliptical grains. Measurements in microfluidic devices and lattice Boltzmann simulations demonstrate that the permeability is determined by the Euler characteristic of the conducting phase. We
Zhiyong Li et al.
Optics express, 21(1), 1281-1286 (2013-02-08)
A gold nanorod-facilitated optical heating method for droplets in microfluidic chips is reported. Individual and stream nanoliter level droplets containing gold nanorods are heated by a low power 808-nm-wavelength laser. Owing to the high photothermal conversion efficiency of gold nanorods
Bo Xian et al.
Aging cell, 12(3), 398-409 (2013-02-28)
Caenorhabditis elegans is a leading model organism for studying the basic mechanisms of aging. Progress has been limited, however, by the lack of an automated system for quantitative analysis of longevity and mean lifespan. To address this barrier, we developed
Benjamin R Schudel et al.
Lab on a chip, 13(5), 811-817 (2013-01-31)
RNA interference (RNAi) is a powerful tool for functional genomics with the capacity to comprehensively analyze host-pathogen interactions. High-throughput RNAi screening is used to systematically perturb cellular pathways and discover therapeutic targets, but the method can be tedious and requires

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service