Merck
CN
All Photos(1)

Documents

Safety Information

49664

Sigma-Aldrich

Micro particles based on polystyrene, magnetic

10 μm particle size, std dev <0.5 μm

Sign Into View Organizational & Contract Pricing

Select a Size

Change View
Synonym(s):
Latex beads from PS, magnetic

form

aqueous solution

Quality Level

composition

iron oxide, ≥20%

concentration

5% solids

particle size

10 μm std dev <0.5 μm

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
396897559716435
composition

iron oxide, ≥20%

composition

iron oxide, ≥20%

composition

iron oxide, ≥20%

composition

-

concentration

5% solids

concentration

5% solids

concentration

5% solids

concentration

10% (solids)

particle size

10 μm std dev <0.5 μm

particle size

5 μm std dev <0.5 μm

particle size

1 μm std dev <0.1 μm

particle size

200 μm std dev <4 μm

storage temp.

2-8°C

storage temp.

2-8°C

storage temp.

2-8°C

storage temp.

2-8°C

General description

Superparamagnetic nanoparticles embedded in polystyrene microspheres (magnetic beads) play a vital role in cell separation and labeling. In addition, it is also used in various biomedical and bioengineering applications such as magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, and drug delivery.
Magnetic polystyrene particles

Application

Micro particles based on polystyrene, magnetic has been used as magnetic biofilm carriers to separate and re-introduce microorganisms in a continuously stirred tank reactors (CSTR). It has also been used in magnetic microrheometry for measuring the cell-size-scale viscoelastic properties of stiffer 3D cell-culture matrices by micromanipulator experiments.

Storage Class Code

12 - Non Combustible Liquids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Information

新产品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Juho Pokki et al.
Biomedical microdevices, 23(2), 27-27 (2021-04-27)
Changes in extracellular matrix stiffness impact a variety of biological processes including cancer progression. However, cells also actively remodel the matrices they interact with, dynamically altering the matrix mechanics they respond to. Further, cells not only react to matrix stiffness
Erdal C Oğuz et al.
Physical review letters, 124(23), 238003-238003 (2020-07-01)
Recovery of ground-state degeneracy in two-dimensional square ice is a significant challenge in the field of geometric frustration with far-reaching fundamental implications, such as realization of vertex models and understanding the effect of dimensionality reduction. We combine experiments, theory, and
Yau Kei Chan et al.
ACS applied materials & interfaces, 11(25), 22869-22877 (2019-05-31)
Cells in vitro usually require a solid scaffold to attach and form two-dimensional monolayer structures. To obtain a substrate-free cell monolayer, long culture time and specific detaching procedures are required. In this study, a thin-film-flow-induced strategy is reported to overcome

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service