Skip to Content
Merck
CN

67563

3,4-Dihydroxy-5-methoxycinnamic acid

≥95.0% (HPLC)

Synonym(s):

3-(3,4-Dihydroxy-5-methoxyphenyl)-2-propenoic acid, 3-Methoxycaffeic acid, 5-Hydroxyferulic acid

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C10H10O5
CAS Number:
Molecular Weight:
210.18
UNSPSC Code:
12352106
NACRES:
NA.25
PubChem Substance ID:
MDL number:
Beilstein/REAXYS Number:
2697317
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

3,4-Dihydroxy-5-methoxycinnamic acid, ≥95.0% (HPLC)

Quality Level

InChI

1S/C10H10O5/c1-15-8-5-6(2-3-9(12)13)4-7(11)10(8)14/h2-5,11,14H,1H3,(H,12,13)/b3-2+

SMILES string

COc1cc(\C=C\C(O)=O)cc(O)c1O

InChI key

YFXWTVLDSKSYLW-NSCUHMNNSA-N

assay

≥95.0% (HPLC)

form

solid

application(s)

metabolomics
vitamins, nutraceuticals, and natural products

Biochem/physiol Actions

Secondary plant metabolite of the phenylpropanoid pathway.

Packaging

Bottomless glass bottle. Contents are inside inserted fused cone.

pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

target_organs

Respiratory system

Storage Class

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

C C Chapple et al.
The Plant cell, 4(11), 1413-1424 (1992-11-01)
Mutants of Arabidopsis deficient in a major leaf phenylpropanoid ester, 2-O-sinapoyl-L-malate, were identified by thin-layer chromatographic screening of methanolic leaf extracts from several thousand mutagenized plants. Mutations at a locus designated SIN1 also eliminate accumulation of the sinapic acid esters
S Maury et al.
Plant physiology, 121(1), 215-224 (1999-09-11)
The biosynthesis of lignin monomers involves two methylation steps catalyzed by orthodiphenol-O-methyltransferases: caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferases (COMTs) and caffeoyl-coenzyme A (CoA)/5-hydroxyferuloyl-CoA 3/5-O-methyltransferases (CCoAOMTs). Two COMT classes (I and II) were already known to occur in tobacco (Nicotiana tabacum) and three
Gudrun Schröder et al.
Phytochemistry, 59(1), 1-8 (2002-01-05)
Plant O-methyltransferases (OMTs) have important roles in secondary metabolite biosynthesis. Sequencing projects and homology-based cloning strategies yield sequences for proteins with similarities to known OMTs, but the identification of the physiological substrates is not trivial. We investigated with a cDNA
Scott A Harding et al.
Plant physiology, 128(2), 428-438 (2002-02-14)
4-Coumarate:coenzyme A ligase (4CL) activates hydroxycinnamates for entry into phenylpropanoid branchways that support various metabolic activities, including lignification and flavonoid biosynthesis. However, it is not clear whether and how 4CL proteins with their broad substrate specificities fulfill the specific hydroxycinnamate
Nicolas Amelot et al.
Plant, cell & environment, 34(1), 149-161 (2010-10-16)
Plant cells use calcium-based signalling pathways to transduce biotic and/or abiotic stimuli into adaptive responses. However, little is known about the coupling between calcium signalling, transcriptional regulation and the downstream biochemical processes. To understand these relationships better, we challenged tobacco

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service