Skip to Content
Merck
CN

73063

Sigma-Aldrich

Alanine Dehydrogenase, recombinant

recombinant, expressed in E. coli, ≥15 U/mg

Sign Into View Organizational & Contract Pricing

About This Item

CAS Number:
EC Number:
EC Number:
MDL number:
UNSPSC Code:
12352204
NACRES:
NA.54
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

recombinant

expressed in E. coli

Quality Level

form

crystals
powder

specific activity

≥15 U/mg

storage temp.

−20°C

Application

Alanine dehydrogenase (ald) is an oxidoreductase that is involved in taurin/hypotaurine metabolism and CO2 fixation. It is used in various enzyme assays and in kinetic studies .

Biochem/physiol Actions

Alanine dehydrogenase catalyzes the reversible reductive amination of pyruvate using NADH as an oxidation/reduction cofactor .

Other Notes

1 U corresponds to the amount of enzyme which converts 1 μmol L-alanine per minute at pH 10.0 and 30°C (NAD as cofactor).

Pictograms

Health hazard

Signal Word

Danger

Hazard Statements

Hazard Classifications

Resp. Sens. 1

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Regulatory Information

常规特殊物品

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

M T Smith et al.
The Journal of biological chemistry, 268(15), 10746-10753 (1993-05-25)
The kinetic mechanism of alanine dehydrogenase from soybean nodule bacteroids was studied by initial velocity experiments with or without product inhibitors, dead-end inhibitors, or alternate substrates. Without inhibitors, double-reciprocal plots of initial velocity experiments showed intersecting lines, indicating a sequential
Daniel Agren et al.
Journal of molecular biology, 377(4), 1161-1173 (2008-02-29)
L-alanine dehydrogenase from Mycobacterium tuberculosis catalyzes the NADH-dependent reversible conversion of pyruvate and ammonia to L-alanine. Expression of the gene coding for this enzyme is up-regulated in the persistent phase of the organism, and alanine dehydrogenase is therefore a potential
A Sinem Ozyurt et al.
Proteins, 72(1), 184-196 (2008-01-25)
This study describes a method to computationally assess the function of homologous enzymes through small molecule binding interaction energy. Three experimentally determined X-ray structures and four enzyme models from ornithine cyclo-deaminase, alanine dehydrogenase, and mu-crystallin were used in combination with
Xueli Zhang et al.
Applied microbiology and biotechnology, 77(2), 355-366 (2007-09-18)
Escherichia coli W was genetically engineered to produce L: -alanine as the primary fermentation product from sugars by replacing the native D: -lactate dehydrogenase of E. coli SZ194 with alanine dehydrogenase from Geobacillus stearothermophilus. As a result, the heterologous alanine
Sivagamisundaram Chavadi et al.
Journal of bacteriology, 191(24), 7545-7553 (2009-10-13)
To better understand the global effects of "natural" lesions in genes involved in the pyruvate metabolism in Mycobacterium bovis, null mutations were made in the Mycobacterium tuberculosis H37Rv ald and pykA genes to mimic the M. bovis situation. Like M.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service