Skip to Content
Merck
CN

88930

Thionin acetate salt

suitable for microscopy

Synonym(s):

3,7-Diamino-5-phenothiazinium acetate, Lauth’s violet

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C12H9N3S · C2H4O2
CAS Number:
Molecular Weight:
287.34
PubChem Substance ID:
UNSPSC Code:
12352200
NACRES:
NA.25
MDL number:
Colour Index Number:
52000
Beilstein/REAXYS Number:
4345073
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

SMILES string

CC([O-])=O.Nc1ccc2nc3ccc(N)cc3[s+]c2c1

InChI

1S/C12H10N3S.C2H4O2/c13-7-1-3-9-11(5-7)16-12-6-8(14)2-4-10(12)15-9;1-2(3)4/h1-6H,13-14H2;1H3,(H,3,4)/q+1;/p-1

InChI key

OWXBIRAFHWASMS-UHFFFAOYSA-M

form

powder

technique(s)

titration: suitable

suitability

suitable for microscopy

Looking for similar products? Visit Product Comparison Guide

Application

Thionine (Lauth′s violet), a metachromatic dye, is widely used as a biological stain of materials such as DNA. Thionine is being studied as an electron mediator in the development of microbial fuel cells and electrochemical biosensors.

Storage Class

13 - Non Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Liu Deng et al.
Analytical chemistry, 82(10), 4283-4287 (2010-04-21)
In this work we developed a fully integrated biofuel cell on a microchip, which consisted of glucose dehydrogenase supported (carbon nanotubes/thionine/gold nanoparticles)(8) multilayer as the anode, and the (carbon nanotubes/polylysine/laccase)(15) multilayer as the cathode. The as-obtained biofuel cell produced open
Ling Meng et al.
Biosensors & bioelectronics, 24(6), 1751-1756 (2008-10-24)
A glutamate biosensor based on the electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH), which was generated by the enzymatic reaction, was developed via employing a single-walled carbon nanotubes/thionine (Th-SWNTs) nanocomposite as a mediator and an enzyme immobilization matrix. The
Selvaraj Baskar et al.
Biosensors & bioelectronics, 33(1), 95-99 (2012-01-24)
We report here a novel detection scheme for simultaneous detection of NADH and H(2)O(2) based on a bifunctional poly(thionine)-modified electrode. Electropolymerization of thionine on a "preanodized" screen-printed carbon electrode effectively lowers the oxidation potential of NADH to 0.15 V (vs.
Yunying Xie et al.
Analytica chimica acta, 699(1), 44-48 (2011-06-28)
We reported a graphene-based immunosensor for electrochemical quantification of phosphorylated p53 on serine 15 (phospho-p53(15)), a potential biomarker of gamma-radiation exposure. The principle is based on sandwich immunoassay and the resulting immunocomplex is formed among phospho-p53 capture antibody, phospho-p53(15) antigen
Zhanxia Zhang et al.
Journal of the American Chemical Society, 135(5), 1934-1940 (2013-01-10)
The fluorescent dyes methylene blue, MB(+), and thionine, Th(+), can be trapped in the pores of mesoporous silica, MP-SiO(2), by means of functional nanostructures consisting of the Mg(2+)- or Zn(2+)-dependent DNAzyme sequences. In the presence of Mg(2+) or Zn(2+) ions

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service