Skip to Content
Merck
CN

C4889

Chromosorb® W

80-100 mesh

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

CAS Number:
UNSPSC Code:
12352200
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

InChI key

VYPSYNLAJGMNEJ-UHFFFAOYSA-N

InChI

1S/O2Si/c1-3-2

SMILES string

O=[Si]=O

particle size

80-100 mesh

density

0.18 g/cm3 (loose weight)(lit.)

Looking for similar products? Visit Product Comparison Guide

Preparation Note

Non Acid Washed

Legal Information

Chromosorb is a registered trademark of Imerys Minerals California, Inc.

pictograms

Health hazard

signalword

Danger

hcodes

Hazard Classifications

STOT RE 1 Inhalation

target_organs

Lungs

Storage Class

6.1D - Non-combustible acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

wgk

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Information

新产品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Guodong Sheng et al.
Environmental science & technology, 45(18), 7718-7726 (2011-08-23)
Sequestration of Ni(II) on diatomite as a function of time, pH, and temperature was investigated by batch, XPS, and EXAFS techniques. The ionic strength-dependent sorption at pH < 7.0 was consistent with outer-sphere surface complexation, while the ionic strength-independent sorption
Myroslav Sprynskyy et al.
Journal of hazardous materials, 181(1-3), 700-707 (2010-06-15)
In this work the natural and the surfactant modified diatomite has been tested for ability to remove uranium ions from aqueous solutions. Such controlling factors of the adsorption process as initial uranium concentration, pH, contact time and ionic strength have
Gang Pan et al.
Chemphyschem : a European journal of chemical physics and physical chemistry, 13(8), 2205-2212 (2012-01-25)
The formation mechanism of a nanoscale gas state is studied on inorganic clay surfaces modified with hexamethyldisilazane, which show different contact angles in ethanol-water solutions. As the dissolved oxygen becomes oversaturated due to the decrease in ethanol-water ratio, oxygen nanoscale
Necla Caliskan et al.
Journal of hazardous materials, 193, 27-36 (2011-07-19)
The removal of Zn(II) ions from aqueous solution was studied using natural and MnO(2) modified diatomite samples at different temperatures. The linear Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption equations were applied to describe the equilibrium isotherms. From the D-R model
Maria Aivalioti et al.
Journal of hazardous materials, 207-208, 117-127 (2011-04-16)
The removal of BTEX (benzene, toluene, ethyl-benzene and m-,p-,o-xylenes), MTBE (methyl tertiary butyl ether) and TAME (tertiary amyl methyl ether) from aqueous solutions by raw, thermally, chemically and both chemically and thermally treated diatomite was studied, through batch adsorption experiments.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service