Skip to Content
Merck
CN

E2634

Ergosta-5,7,9(11),22-tetraen-3β-ol

~96% (HPLC)

Synonym(s):

Dehydroergosterol

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C28H42O
CAS Number:
Molecular Weight:
394.63
NACRES:
NA.77
PubChem Substance ID:
UNSPSC Code:
12352200
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Ergosta-5,7,9(11),22-tetraen-3β-ol, ~96% (HPLC)

InChI key

QSVJYFLQYMVBDR-CMNOFMQQSA-N

SMILES string

[H][C@@]1(CC[C@@]2([H])C3=CC=C4C[C@@H](O)CC[C@]4(C)C3=CC[C@]12C)[C@H](C)\C=C\[C@H](C)C(C)C

InChI

1S/C28H42O/c1-18(2)19(3)7-8-20(4)24-11-12-25-23-10-9-21-17-22(29)13-15-27(21,5)26(23)14-16-28(24,25)6/h7-10,14,18-20,22,24-25,29H,11-13,15-17H2,1-6H3/b8-7+/t19-,20+,22-,24+,25-,27-,28+/m0/s1

assay

~96% (HPLC)

storage temp.

−20°C

Quality Level

Application

Ergosta-5,7,9(11),22-tetraen-3β-ol has been used to examine the acyltransferase activity of lecithin:cholesterol acyltransferase (LCAT). It has also been used for liposome preparation.
A fluorescent cholesterol analog useful as a probe in membrane research.

General description

Ergosta-5,7,9(11),22-tetraen-3β-ol is an analogue of ergosterol. It comprises of three conjugated double bonds in a steroid ring system. Ergosta-5,7,9(11),22-tetraen-3β-ol possesses anti-inflammatory property. It is used as a cholesterol reporter.

pictograms

Health hazard

signalword

Warning

hcodes

Hazard Classifications

Carc. 2 - STOT RE 2

Storage Class

11 - Combustible Solids

wgk

WGK 2

flash_point_f

Not applicable

flash_point_c

Not applicable

Regulatory Information

易制毒化学品(2类)
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Alexander G Georgiev et al.
Traffic (Copenhagen, Denmark), 12(10), 1341-1355 (2011-06-22)
Sterol transport between the endoplasmic reticulum (ER) and plasma membrane (PM) occurs by an ATP-dependent, non-vesicular mechanism that is presumed to require sterol transport proteins (STPs). In Saccharomyces cerevisiae, homologs of the mammalian oxysterol-binding protein (Osh1-7) have been proposed to
Laura J Ayling et al.
Journal of cell science, 125(Pt 4), 869-886 (2012-03-09)
The central and pervasive influence of cAMP on cellular functions underscores the value of stringent control of the organization of adenylyl cyclases (ACs) in the plasma membrane. Biochemical data suggest that ACs reside in membrane rafts and could compartmentalize intermediary
Fischer, R.T., et al.
J. Biol. Physics, 13, 13-13 (1985)
Daniel Wüstner et al.
Histochemistry and cell biology, 130(5), 891-908 (2008-09-13)
Distribution and dynamics of cholesterol in the plasma membrane as well as internalization pathways for sterol from the cell surface are of great cell biological interest. Here, UV-sensitive wide field microscopy of the intrinsically fluorescent sterols, dehydroergosterol (DHE) and cholestatrienol
Peter Kohut et al.
Biochemical and biophysical research communications, 404(1), 233-238 (2010-11-30)
Uptake of external sterols in the yeast Saccharomyces cerevisiae is a multistep process limited to anaerobiosis or heme deficiency. It includes crossing the cell wall, insertion of sterol molecules into plasma membrane and their internalization and integration into intracellular membranes.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service