Sign In to View Organizational & Contract Pricing
Select a Size
About This Item
Empirical Formula (Hill Notation):
C22H35NO4
CAS Number:
Molecular Weight:
377.52
Beilstein:
1891754
EC Number:
MDL number:
UNSPSC Code:
12352204
PubChem Substance ID:
NACRES:
NA.83
Product Name
4-Nitrophenyl palmitate, lipase substrate
Quality Level
Assay
≥98% (TLC)
form
powder
solubility
chloroform: 100 mg/mL, clear, colorless to faintly yellow
storage temp.
−20°C
SMILES string
CCCCCCCCCCCCCCCC(=O)Oc1ccc(cc1)[N+]([O-])=O
InChI
1S/C22H35NO4/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-22(24)27-21-18-16-20(17-19-21)23(25)26/h16-19H,2-15H2,1H3
InChI key
LVZSQWIWCANHPF-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
General description
4-Nitrophenyl palmitate is a substrate for lipase enzyme activity. Lipase hydrolyzes 4-nitrophenyl palmitate and yields the yellow colored product 4-nitrophenol, which is measurable spectrophotometrically at 410 nm. This method is advantageous due to its short reaction time and facile spectrophotometric analyses. The cell-bound lipase has preference for 4-nitrophenyl palmitate as substrate than the extracellular lipase.
Application
4-nitrophenyl palmitate has been used as a substrate for lipase enzyme activity.
Signal Word
Warning
Hazard Statements
Precautionary Statements
Hazard Classifications
Skin Sens. 1
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Khadijeh Mozaffari et al.
Molecules (Basel, Switzerland), 26(12) (2021-07-03)
Cannabidiol (CBD) is a hydrophobic non-psychoactive compound with therapeutic characteristics. Animal and human studies have shown its poor oral bioavailability in vivo, and the impact of consuming lipid-soluble CBD with and without food on gut bioaccessibility has not been explored.
Differences in hydrolytic abilities of two crude lipases from Geotrichum candidum 4013
Brabcova J, et al.
Yeast, 27(12), 1029-1038 (2010)
Kai Yuan et al.
Journal of industrial microbiology & biotechnology, 46(8), 1091-1101 (2019-06-21)
Metabolic fluxes during lipase production by Bacillus subtilis CICC 20034 in synthetic medium were studied using metabolic flux analysis (MFA). The MFA showed that lipase production was dependent on, and coupled to the tributyrin uptake rate, formation of biomass, lactate
Seon-Woo Lee et al.
Applied microbiology and biotechnology, 65(6), 720-726 (2004-09-15)
The construction and screening of metagenomic libraries constitute a valuable resource for obtaining novel biocatalysts. In this work, we present the construction of a metagenomic library in Escherichia coli using fosmid and microbial DNA directly isolated from forest topsoil and
Shamoon Asmat et al.
Materials science & engineering. C, Materials for biological applications, 99, 25-36 (2019-03-21)
Herein, as a promising support, a magnetic enzyme nanoformulation have been designed and fabricated by a poly-o-toluidine modification approach. Owing to the magnetic nature and the existence of amine functionalized groups, the as-synthesised poly(o-toluidine) functionalized magnetic nanocomposite (Fe3O4@POT) was employed
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service