Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Empirical Formula (Hill Notation):
C18H18ClN3O
CAS Number:
Molecular Weight:
327.81
UNSPSC Code:
51111800
PubChem Substance ID:
NACRES:
NA.77
Product Name
Brassinazole, ≥98% (HPLC)
SMILES string
ClC1=CC=C(C[C@@H](N2N=CN=C2)[C@@](C)(O)C3=CC=CC=C3)C=C1
InChI
1S/C18H18ClN3O/c1-18(23,15-5-3-2-4-6-15)17(22-13-20-12-21-22)11-14-7-9-16(19)10-8-14/h2-10,12-13,17,23H,11H2,1H3/t17-,18+/m1/s1
InChI key
YULDTPKHZNKFEY-MSOLQXFVSA-N
assay
≥98% (HPLC)
form
powder
color
white to beige
solubility
DMSO: 5 mg/mL, clear (warmed)
storage temp.
2-8°C
Quality Level
Related Categories
Application
Brassinazole has been used in phenotype analyses to detect morphological changes in G-protein β subunit agb1 mutants.
Biochem/physiol Actions
Brassinazole induces dwarfism and morphological changes in Arabidopsis, which results in similarity with brassinosteroid deficient mutants. These changes were neutralized by brassinolide treatment, indicating that brassinazole leads to brassinolide deficiency in Arabidopsis.
Brassinazole is an inhibitor of the biosynthesis of brassinosteroids, steroid hormones essential for plant growth and development.
Brassinazole is an inhibitor of the biosynthesis of brassinosteroids, steroid hormones essential for plant growth and development. It has been used to study brassinosteroids function.
Storage Class
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
T Asami et al.
Plant physiology, 123(1), 93-100 (2000-05-12)
Screening for brassinosteroid (BR) biosynthesis inhibitors was performed to find chemicals that induce dwarfism in Arabidopsis, mutants that resembled BR biosynthesis mutants that can be rescued by BR. Through this screening experiment, the compound brassinazole was selected as the most
Zhongtao Jia et al.
Plant physiology, 183(3), 998-1010 (2020-05-14)
Root developmental plasticity enables plants to adapt to limiting or fluctuating nutrient conditions in the soil. When grown under nitrogen (N) deficiency, plants develop a more exploratory root system by increasing primary and lateral root length. However, mechanisms underlying this
Arabidopsis G-Protein β Subunit AGB1 Interacts with BES1 to Regulate Brassinosteroid Signaling and Cell Elongation.
Zhang T, et al.
Frontiers in Plant Science, 8, 2225-2225 (2018)
Lijiang Hou et al.
Plant & cell physiology, 60(8), 1761-1777 (2019-05-18)
Brassinosteroid (BR) plays an important role in plant development and biotic and abiotic stress tolerance, but its specific function remains largely unknown in wheat (Triticum aestivum L.), preventing its utilization in this important crop. In this study, the function of
Xuejiao Cheng et al.
The Plant cell, 32(4), 923-934 (2020-02-16)
Six subspecies of hexaploid wheat (Triticumaestivum) have been identified, but the origin of Indian dwarf wheat (Triticum sphaerococcum), the only subspecies with round grains, is currently unknown. Here, we isolated the grain-shape gene Tasg-D1 in Tsphaerococcum via positional cloning. Tasg-D1
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service