Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Empirical Formula (Hill Notation):
C20H15N5O3S
CAS Number:
Molecular Weight:
405.43
UNSPSC Code:
12352200
NACRES:
NA.77
MDL number:
Product Name
MIND4-17, ≥98% (HPLC)
InChI
1S/C20H15N5O3S/c26-25(27)16-11-12-19(21-13-16)29-20-23-22-18(14-28-17-9-5-2-6-10-17)24(20)15-7-3-1-4-8-15/h1-13H,14H2
InChI key
OZUBDKIROJPQGE-UHFFFAOYSA-N
SMILES string
O=[N+]([O-])C(C=C1)=CN=C1SC2=NN=C(COC3=CC=CC=C3)N2C4=CC=CC=C4
assay
≥98% (HPLC)
form
powder
color
white to brown
solubility
DMSO: 2 mg/mL, clear (warmed)
storage temp.
2-8°C
Biochem/physiol Actions
KEAP1 covalent modifier with therapeutic potential for Huntington′s disease by promoting NRF2 activation.
MIND4-17 is a potent NRF2 (nuclear factor erythroid 2-related factor 2) activator that covalently modifies a critical stress-sensor cysteine (C151) in the BTB domain of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. MIND4-17 induces NRF2 activation responses in neuronal and non-neuronal cultures (effective conc. 0.1-10 μM) of human, mouse, and rat origins. In addition, MIND4-17 effectively reduces endotoxin-induced IL-6 release from WT as well as YAC128 HD mutant mice-derived primary microglia and astrocytes, however, NRF2 induction by MIND4-17 is shown to be compromised in human Huntington′s diseased (HD) relative to non-disesed neural stem cells due to suppressive influence of the expanded CAG repeat mutation on pathway activation.
signalword
Warning
hcodes
Hazard Classifications
Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3
target_organs
Respiratory system
Storage Class
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
Regulatory Information
新产品
This item has
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Luisa Quinti et al.
Cell chemical biology, 23(7), 849-861 (2016-07-19)
There are currently no disease-modifying therapies for the neurodegenerative disorder Huntington's disease (HD). This study identified novel thiazole-containing inhibitors of the deacetylase sirtuin-2 (SIRT2) with neuroprotective activity in ex vivo brain slice and Drosophila models of HD. A systems biology approach
Luisa Quinti et al.
Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4676-E4685 (2017-05-24)
The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service