Skip to Content
Merck
CN

V900511

Cellulase from Aspergillus niger

Vetec, reagent grade

Synonym(s):

1,4-(1,3:1,4)-β-D-Glucan 4-glucanohydrolase

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

CAS Number:
UNSPSC Code:
12352204
EC Number:
232-734-4
MDL number:
EC Number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

biological source

Aspergillus niger

grade

reagent grade

product line

Vetec

form

solid

cellulase activity

≥0.3 units/mg solid

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

Biochem/physiol Actions

Cellulase from Aspergillus niger catalyzes the hydrolysis of endo-1,4-β-D-glycosidic linkages in cellulose, lichenin, barley glucan, and the cellooligosaccharides cellotriose to cellohexaose. It does not cleave cellobiose or p-nitrophenyl-β-D-glucoside. This enzyme will also cleave intact glycosaminoglycan from a core peptide by hydrolyzing the xylosyl serine linkage.

Legal Information

Vetec is a trademark of Merck KGaA, Darmstadt, Germany

pictograms

Health hazard

signalword

Danger

hcodes

Hazard Classifications

Resp. Sens. 1

Storage Class

11 - Combustible Solids

wgk

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

Regulatory Information

常规特殊物品
This item has

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Wei Weiqi et al.
Bioresource technology, 128, 725-730 (2012-12-25)
Combination of liquid hot water pretreatment (LHWP) and wet disk milling (WDM) was investigated in this study to enhance the sugar recovery yield both in prehydrolyzate and enzymatic hydrolyzate. The results show that WDM with LHWP at 180 °C for
Antonella Amore et al.
Microbial cell factories, 11, 164-164 (2012-12-27)
The use of lignocellulosic materials for second generation ethanol production would give several advantages such as minimizing the conflict between land use for food and fuel production, providing less expensive raw materials than conventional agricultural feedstock, allowing lower greenhouse gas
Guosheng Xie et al.
PloS one, 8(1), e50171-e50171 (2013-01-12)
Plant glycoside hydrolase family 9 (GH9) comprises typical endo-β-1,4-glucanase (EGases, EC3.2.1.4). Although GH9A (KORRIGAN) family genes have been reported to be involved in cellulose biosynthesis in plants, much remains unknown about other GH9 subclasses. In this study, we observed a
Mark A Currie et al.
The Journal of biological chemistry, 288(11), 7978-7985 (2013-01-24)
Clostridium thermocellum produces the prototypical cellulosome, a large multienzyme complex that efficiently hydrolyzes plant cell wall polysaccharides into fermentable sugars. This ability has garnered great interest in its potential application in biofuel production. The core non-catalytic scaffoldin subunit, CipA, bears
Margaret Buchanan et al.
BMC plant biology, 12, 235-235 (2012-12-13)
Endo-(1,4)-β-glucanase (cellulase) glycosyl hydrolase GH9 enzymes have been implicated in several aspects of cell wall metabolism in higher plants, including cellulose biosynthesis and degradation, modification of other wall polysaccharides that contain contiguous (1,4)-β-glucosyl residues, and wall loosening during cell elongation.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service