Skip to Content
Merck
CN
  • S1QELs suppress mitochondrial superoxide/hydrogen peroxide production from site IQ without inhibiting reverse electron flow through Complex I.

S1QELs suppress mitochondrial superoxide/hydrogen peroxide production from site IQ without inhibiting reverse electron flow through Complex I.

Free radical biology & medicine (2019-09-14)
Hoi-Shan Wong, Pierre-Axel Monternier, Martin D Brand
ABSTRACT

Mitochondria are important sources of superoxide and hydrogen peroxide in cell signaling and disease. In particular, superoxide/hydrogen peroxide production during reverse electron transport from ubiquinol to NAD+ though Complex I is implicated in several physiological and pathological processes. S1QELs are small molecules that suppress superoxide/hydrogen peroxide production at Complex I without affecting forward electron transport. Their mechanism of action is disputed. To test different mechanistic models, we compared the effects of two inhibitors of Complex I electron transport (piericidin A and rotenone) and two S1QELs from different chemical families on superoxide/hydrogen peroxide production and electron transport by Complex I in isolated mitochondria. Piericidin A and rotenone (and S1QEL1.1 at higher concentrations) prevented superoxide/hydrogen peroxide production from sites IQ and IF in Complex I by inhibiting reverse electron transport into the complex. S1QELs decreased the potency of electron transport inhibition by piericidin A and rotenone, suggesting that S1QELs bind directly to Complex I. S1QEL2.1 (and S1QEL1.1 at lower concentrations) suppressed site IQ without affecting reverse electron transport or site IF, showing that sites IQ and IF are distinct, and that S1QELs do not work simply by decreasing reverse electron transport to site IF (or site IQ). S1QELs did not affect the reduction of NAD+ or the rate of site IF driven by reverse electron transport, therefore they do not alter the driving forces for reverse electron transport and that is not how they suppress site IQ. We conclude that S1QELs bind to Complex I to influence the conformation of the piericidin A and rotenone binding sites and directly suppress superoxide/hydrogen peroxide production at site IQ, which is a separate site from site IF.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, ≥98% (HPLC), powder
Piericidin A solution, ≥95% (HPLC), Piericidin A 1% Solution in Ethanol