Skip to Content
Merck
CN
  • Intermittent compressive force promotes osteogenic differentiation in human periodontal ligament cells by regulating the transforming growth factor-β pathway.

Intermittent compressive force promotes osteogenic differentiation in human periodontal ligament cells by regulating the transforming growth factor-β pathway.

Cell death & disease (2019-10-09)
Jeeranan Manokawinchoke, Prasit Pavasant, Chenphop Sawangmake, Nuttapol Limjeerajarus, Chalida N Limjeerajarus, Hiroshi Egusa, Thanaphum Osathanon
ABSTRACT

Mechanical force regulates periodontal ligament cell (PDL) behavior. However, different force types lead to distinct PDL responses. Here, we report that pretreatment with an intermittent compressive force (ICF), but not a continuous compressive force (CCF), promoted human PDL (hPDL) osteogenic differentiation as determined by osteogenic marker gene expression and mineral deposition in vitro. ICF-induced osterix (OSX) expression was inhibited by cycloheximide and monensin. Although CCF and ICF significantly increased extracellular adenosine triphosphate (ATP) levels, pretreatment with exogenous ATP did not affect hPDL osteogenic differentiation. Gene-expression profiling of hPDLs subjected to CCF or ICF revealed that extracellular matrix (ECM)-receptor interaction, focal adhesion, and transforming growth factor beta (TGF-β) signaling pathway genes were commonly upregulated, while calcium signaling pathway genes were downregulated in both CCF- and ICF-treated hPDLs. The TGFB1 mRNA level was significantly increased, while those of TGFB2 and TGFB3 were decreased by ICF treatment. In contrast, CCF did not modify TGFB1 expression. Inhibiting TGF-β receptor type I or adding a TGF-β1 neutralizing antibody attenuated the ICF-induced OSX expression. Exogenous TGF-β1 pretreatment promoted hPDL osteogenic marker gene expression and mineral deposition. Additionally, pretreatment with ICF in the presence of TGF-β receptor type I inhibitor attenuated the ICF-induced mineralization. In conclusion, this study reveals the effects of ICF on osteogenic differentiation in hPDLs and implicates TGF-β signaling as one of its regulatory mechanisms.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Protease Inhibitor Cocktail, for use with mammalian cell and tissue extracts, DMSO solution
Sigma-Aldrich
SB 431542 hydrate, ≥98% (HPLC), powder
Sigma-Aldrich
Rho Kinase Inhibitor, The Rho kinase inhibitor, CAS 872543-07-6, is a cell-permeable, highly specific, reversible, potent, and ATP-competitive inhibitor of Rho-associated kinase (ROCK; Ki = 1.6 nM).
Sigma-Aldrich
TGF-β1, Human, Recombinant, CHO Cell Line
Sigma-Aldrich
Streptavidin−FITC from Streptomyces avidinii, essentially salt-free, lyophilized powder, ≥5 units/mg protein
Sigma-Aldrich
Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5, clone 6C5, Chemicon®, from mouse
Sigma-Aldrich
JNK Inhibitor II, JNK Inhibitor II. SP600125, CAS 129-56-6, is a potent, cell-permeable, selective, and ATP competitive inhibitor of c-Jun N-terminal kinase (JNK; IC50 = 40 nM for JNK-1 & JNK-2 & 90 nM for JNK-3).
Sigma-Aldrich
p38 MAP Kinase Inhibitor, The p38 MAP Kinase Inhibitor, also referenced under CAS 219138-24-6, controls the biological activity of p38 MAP Kinase. This small molecule/inhibitor is primarily used for Phosphorylation & Dephosphorylation applications.