Skip to Content
Merck
CN
  • SF3B1 mutation and ATM deletion codrive leukemogenesis via centromeric R-loop dysregulation.

SF3B1 mutation and ATM deletion codrive leukemogenesis via centromeric R-loop dysregulation.

The Journal of clinical investigation (2023-07-18)
Martina Cusan, Haifeng Shen, Bo Zhang, Aijun Liao, Lu Yang, Meiling Jin, Mike Fernandez, Prajish Iyer, Yiming Wu, Kevyn Hart, Catherine Gutierrez, Sara Nik, Shondra M Pruett-Miller, Jeremy Stark, Esther A Obeng, Teresa V Bowman, Catherine J Wu, Ren-Jang Lin, Lili Wang
ABSTRACT

RNA splicing factor SF3B1 is recurrently mutated in various cancers, particularly in hematologic malignancies. We previously reported that coexpression of Sf3b1 mutation and Atm deletion in B cells, but not either lesion alone, leads to the onset of chronic lymphocytic leukemia (CLL) with CLL cells harboring chromosome amplification. However, the exact role of Sf3b1 mutation and Atm deletion in chromosomal instability (CIN) remains unclear. Here, we demonstrated that SF3B1 mutation promotes centromeric R-loop (cen-R-loop) accumulation, leading to increased chromosome oscillation, impaired chromosome segregation, altered spindle architecture, and aneuploidy, which could be alleviated by removal of cen-R-loop and exaggerated by deletion of ATM. Aberrant splicing of key genes involved in R-loop processing underlay augmentation of cen-R-loop, as overexpression of the normal isoform, but not the altered form, mitigated mitotic stress in SF3B1-mutant cells. Our study identifies a critical role of splice variants in linking RNA splicing dysregulation and CIN and highlights cen-R-loop augmentation as a key mechanism for leukemogenesis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-DNA-RNA Hybrid Antibody, clone S9.6, clone S9.6, from mouse
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)