Skip to Content
Merck
CN
  • Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology.

Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology.

PloS one (2011-06-16)
David Johnston-Monje, Manish N Raizada
ABSTRACT

Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate, Enterobacter asburiae, was able to exit the root and colonize the rhizosphere. Conservation and diversity in Zea-microbe relationships are discussed in the context of ecology, crop domestication, selection and migration.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetoin, natural, ≥95%, FG
Supelco
Acetoin, analytical standard
Sigma-Aldrich
Acetoin, May exist as crystalline dimer
Sigma-Aldrich
Acetoin, primarily dimer, ≥95%, FG
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Propidium iodide, ≥94% (HPLC)
Millipore
Potato Dextrose Agar, NutriSelect® Plus, according to USP, FDA, APHA, powder, for bacteria, pack of 100 g, pack of 500 g, pack of 2.5 kg
Sigma-Aldrich
Carboxymethylcellulose sodium salt, low viscosity
Sigma-Aldrich
Ribonucleic acid from torula yeast, Type VI