Merck
CN

Cyanobacterial conversion of carbon dioxide to 2,3-butanediol.

Proceedings of the National Academy of Sciences of the United States of America (2013-01-09)
John W K Oliver, Iara M P Machado, Hisanari Yoneda, Shota Atsumi
ABSTRACT

Conversion of CO(2) for the synthesis of chemicals by photosynthetic organisms is an attractive target for establishing independence from fossil reserves. However, synthetic pathway construction in cyanobacteria is still in its infancy compared with model fermentative organisms. Here we systematically developed the 2,3-butanediol (23BD) biosynthetic pathway in Synechococcus elongatus PCC7942 as a model system to establish design methods for efficient exogenous chemical production in cyanobacteria. We identified 23BD as a target chemical with low host toxicity, and designed an oxygen-insensitive, cofactor-matched biosynthetic pathway coupled with irreversible enzymatic steps to create a driving force toward the target. Production of 23BD from CO(2) reached 2.38 g/L, which is a significant increase for chemical production from exogenous pathways in cyanobacteria. This work demonstrates that developing strong design methods can continue to increase chemical production in cyanobacteria.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetoin, May exist as crystalline dimer
Sigma-Aldrich
(2S,3S)-(+)-2,3-Butanediol, 97%
Sigma-Aldrich
(2R,3R)-(−)-2,3-Butanediol, 97%
Sigma-Aldrich
2,3-Butanediol, Vetec, reagent grade, 98%
Supelco
Acetoin, analytical standard
Sigma-Aldrich
Acetoin, natural, ≥95%, FG
Sigma-Aldrich
Acetoin, primarily dimer, ≥95%, FG
Sigma-Aldrich
2,3-Butanediol, 98%
Sigma-Aldrich
meso-2,3-Butanediol, 99%
Sigma-Aldrich
Alcohol Dehydrogenase equine, recombinant, expressed in E. coli, ≥0.5 U/mg
Sigma-Aldrich
Alcohol Dehydrogenase from Saccharomyces cerevisiae, powder, ≥300 units/mg protein, mol wt ~141,000 (four subunits)
Sigma-Aldrich
Alcohol Dehydrogenase from Saccharomyces cerevisiae
Sigma-Aldrich
Alcohol Dehydrogenase from Saccharomyces cerevisiae, ≥300 units/mg protein, lyophilized powder (contains buffer salts), Mw 141-151 kDa