Merck
CN
  • ²H enrichment distribution of hepatic glycogen from ²H₂O reveals the contribution of dietary fructose to glycogen synthesis.

²H enrichment distribution of hepatic glycogen from ²H₂O reveals the contribution of dietary fructose to glycogen synthesis.

American journal of physiology. Endocrinology and metabolism (2012-12-06)
Teresa C Delgado, Fátima O Martins, Filipa Carvalho, Ana Gonçalves, Donald K Scott, Robert O'Doherty, M Paula Macedo, John G Jones
ABSTRACT

Dietary fructose can benefit or hinder glycemic control, depending on the quantity consumed, and these contrasting effects are reflected by alterations in postprandial hepatic glycogen synthesis. Recently, we showed that ²H enrichment of glycogen positions 5 and 2 from deuterated water (²H₂O) informs direct and indirect pathway contributions to glycogenesis in naturally feeding rats. Inclusion of position 6(S) ²H enrichment data allows indirect pathway sources to be further resolved into triose phosphate and Krebs cycle precursors. This analysis was applied to six rats that had fed on standard chow (SC) and six rats that had fed on SC plus 35% sucrose in their drinking water (HS). After 2 wk, hepatic glycogenesis sources during overnight feeding were determined by ²H₂O administration and postmortem analysis of glycogen ²H enrichment at the conclusion of the dark period. Net overnight hepatic glycogenesis was similar between SC and HS rodents. Whereas direct pathway contributions were similar (403 ± 71 μmol/g dry wt HS vs. 578 ± 76 μmol/g dry wt SC), triose phosphate contributions were significantly higher for HS compared with SC (382 ± 61 vs. 87 ± 24 μmol/g dry wt, P < 0.01) and Krebs cycle inputs lower for HS compared with SC (110 ± 9 vs. 197 ± 32 μmol/g dry wt, P < 0.05). Analysis of plasma glucose ²H enrichments at the end of the feeding period also revealed a significantly higher fractional contribution of triose phosphate to plasma glucose levels in HS vs. SC. Hence, the ²H enrichment distributions of hepatic glycogen and glucose from ²H₂O inform the contribution of dietary fructose to hepatic glycogen and glucose synthesis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Deuterium oxide, 60 atom % D
Sigma-Aldrich
Deuterium oxide, 70 atom % D
Sigma-Aldrich
Deuterium oxide, filtered, 99.8 atom % D
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 0.05 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 0.75 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 1 % (w/w) 3-(trimethylsilyl)-1-propanesulfonic acid, sodium salt (DSS)