Skip to Content
Merck
CN
  • Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface.

Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface.

ACS applied materials & interfaces (2013-01-08)
Meng He, Min Xu, Lina Zhang
ABSTRACT

A novel, highly hydrophobic cellulose composite film (RCS) with biodegradability was fabricated via solvent-vaporized controllable crystallization of stearic acid in the porous structure of cellulose films (RC). The interface structure and properties of the composite films were investigated with wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, solid-state (13)C NMR, water uptake, tensile testing, water contact angle, and biodegradation tests. The results indicated that the RCS films exhibited high hydrophobicity (water contact angle achieved to 145°), better mechanical properties in the humid state and lower water uptake ratio than RC. Interestingly, the stearic acid crystallization was induced by the pore wall of the cellulose matrix to form a micronano binary structure, resulting in a rough surface. The rough surface with a hierarchical structure containing micronanospace on the RCS film surface could trap abundant air, leading to the high hydrophobicity. Moreover, the RCS films were flexible, biodegradable, and low-cost, showing potential applications in biodegradable water-proof packaging.

MATERIALS
Product Number
Brand
Product Description

Supelco
Stearic acid, analytical standard
Sigma-Aldrich
Stearic acid, ≥95%, FCC, FG
Sigma-Aldrich
Stearic acid, reagent grade, 95%
Sigma-Aldrich
Stearic acid, Grade I, ≥98.5% (capillary GC)
Supelco
Stearic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Stearic acid, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Stearic acid, European Pharmacopoeia (EP) Reference Standard