Skip to Content
Merck
CN
  • Doxycycline prevents matrix remodeling and contraction by trichiasis-derived conjunctival fibroblasts.

Doxycycline prevents matrix remodeling and contraction by trichiasis-derived conjunctival fibroblasts.

Investigative ophthalmology & visual science (2013-06-15)
He Li, Daniel G Ezra, Matthew J Burton, Maryse Bailly
ABSTRACT

Trachoma is a conjunctival scarring disease, which is the leading infectious cause of blindness worldwide. Elimination of blinding trachoma is being held back by the high rate of trichiasis recurrence following surgery. There is currently no treatment available to suppress the profibrotic state and reduce recurrence. Although the mechanisms underlying trichiasis development are unknown, the profibrotic phenotype has been linked to matrix metalloproteinase (MMP) expression. Doxycycline, a well-known tetracycline antibiotic, can act as a broad MMP inhibitor and has showed some success in preventing fibrosis in various clinical contexts. The purpose of this work was to assess the antiscarring properties of doxycycline in an in vitro model of trichiasis fibroblast-mediated tissue contraction. Primary cultures of fibroblasts were established from conjunctival samples obtained from normal donors or during surgery for trachomatous trichiasis. The effect of doxycycline on matrix contraction was investigated in our standard collagen gel contraction model. Cell morphology and matrix integrity were assessed using confocal reflection microscopy. Quantitative real time polymerase chain reaction and a FRET-based assay were used to measure MMP expression and activity, respectively. Doxycycline treatment successfully suppressed the contractile phenotype of trichiasis fibroblasts, matrix degradation, and significantly altered the expression of MMP1, MMP9, and MMP12 associated with the profibrotic phenotype. In view of the results presented here and the wider use of doxycycline in clinical settings, we propose that doxycycline might be useful as a treatment to prevent recurrence following trichiasis surgery.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Collagen, Type I solution from rat tail, BioReagent, suitable for cell culture, sterile-filtered
Sigma-Aldrich
Collagen from Engelbreth-Holm-Swarm murine sarcoma basement membrane, Type IV (Miller), lyophilized powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from rat tail, Bornstein and Traub Type I, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type III (Sigma Type X), powder
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type V (Sigma Type IX), powder
Sigma-Aldrich
Collagen Type IV from human cell culture, Bornstein and Traub Type IV, 0.3 mg/mL, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen human, Bornstein and Traub Type I, acid soluble, powder, ~95% (SDS-PAGE)
Sigma-Aldrich
Collagen from chicken sternal cartilage, Type II (Miller), powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from calf skin, Bornstein and Traub Type I, (0.1% solution in 0.1 M acetic acid), aseptically processed, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type I (Sigma Type VIII), powder
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, powder
Sigma-Aldrich
Doxycycline Hydrochloride, Ready Made Solution, 100 mg/mL in DMSO, ≥95.0% (HPLC)
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, powder
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, solution, suitable for cell culture, High Performance