Skip to Content
Merck
CN
  • Stimulation of Na+/Cl--coupled opioid peptide transport system in SK-N-SH cells by L-kyotorphin, an endogenous substrate for H+-coupled peptide transporter PEPT2.

Stimulation of Na+/Cl--coupled opioid peptide transport system in SK-N-SH cells by L-kyotorphin, an endogenous substrate for H+-coupled peptide transporter PEPT2.

Drug metabolism and pharmacokinetics (2008-09-03)
Santoshanand V Thakkar, Seiji Miyauchi, Puttur D Prasad, Vadivel Ganapathy
ABSTRACT

We have recently identified a Na+/Cl--coupled transport system in mammalian cells for endogenous and synthetic opioid peptides. This transport system does not transport dipeptides/tripeptides, but is stimulated by these small peptides. Here we investigated the influence of L-kyotorphin (L-Tyr-L-Arg), an endogenous dipeptide with opioid activity, on this transport system. The activity of the transport system, measured in SK-N-SH cells (a human neuronal cell line) with deltorphin II as a model substrate, was stimulated approximately 2.5-fold by L-kyotorphin, with half-maximal stimulation occurring at approximately 100 microM. The stimulation was associated primarily with an increase in the affinity for deltorphin II. The stimulation caused by L-kyotorphin was stereospecific; L-Tyr-D-Arg (D-kyotorphin) had minimal effect. The influence of L-kyotorphin was observed also in a different cell line which expressed the opioid peptide transport system. While L-kyotorphin is a stimulator of opioid peptide transport, it is a transportable substrate for the H+-coupled peptide transporter PEPT2, which is expressed widely in the brain. Since the activity of the opioid peptide transport system is modulated by extracellular L-kyotorphin and since PEPT2 is an important determinant of extracellular L-kyotorphin in the brain, the expression/activity of PEPT2 may be a critical factor in the modulation of opioidergic neurotransmission in vivo.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
[D-Ala2]-Deltorphin II, ≥97% (HPLC)