Skip to Content
Merck
CN
  • Actin polymerization mediated by Babesia gibsoni aldolase is required for parasite invasion.

Actin polymerization mediated by Babesia gibsoni aldolase is required for parasite invasion.

Experimental parasitology (2013-06-26)
Youn-Kyoung Goo, Akio Ueno, Mohamad Alaa Terkawi, G Oluga Aboge, Yamagishi Junya, Makoto Igarashi, Jung-Yeon Kim, Yeon-Chul Hong, Dong-Il Chung, Yoshifumi Nishikawa, Xuenan Xuan
ABSTRACT

Host cell invasion by apicomplexan parasites driven by gliding motility and empowered by actin-based movement is essential for parasite survival and pathogenicity. The parasites share a conserved invasion process: actin-based motility led by the coordination of adhesin-cytoskeleton via aldolase. A number of studies of host cell invasion in the Plasmodium species and Toxoplasma gondii have been performed. However, the mechanisms of host cell invasion by Babesia species have not yet been studied. Here, we show that Babesia gibsoni aldolase (BgALD) forms a complex with B. gibsoni thrombospondin-related anonymous protein (BgTRAP) and B. gibsoni actin (BgACT), depending on tryptophan-734 (W-734) in BgTRAP. In addition, actin polymerization is mediated by BgALD. Moreover, cytochalasin D, which disrupts actin polymerization, suppressed B. gibsoni parasite growth and inhibited the host cell invasion by parasites, indicating that actin dynamics are essential for erythrocyte invasion by B. gibsoni. This study is the first molecular approach to determine the invasion mechanisms of Babesia species.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cytochalasin D, Ready Made Solution, from Zygosporium mansonii, 5 mg/mL in DMSO
Sigma-Aldrich
Aldolase from rabbit muscle, ammonium sulfate suspension, 10-20 units/mg protein
Sigma-Aldrich
Aldolase from rabbit muscle, lyophilized powder, ≥8.0 units/mg protein