Skip to Content
Merck
CN
  • Efficient extra- and intracellular alkalinization improves cardiovascular functions in severe lactic acidosis induced by hemorrhagic shock.

Efficient extra- and intracellular alkalinization improves cardiovascular functions in severe lactic acidosis induced by hemorrhagic shock.

Anesthesiology (2013-11-23)
Antoine Kimmoun, Nicolas Ducrocq, Nacira Sennoun, Khodr Issa, Charlène Strub, Jean-Marie Escanyé, Sébastien Leclerc, Bruno Levy
ABSTRACT

Lactic acidosis is associated with cardiovascular failure. Buffering with sodium bicarbonate is proposed in severe lactic acidosis. Bicarbonate induces carbon dioxide generation and hypocalcemia, both cardiovascular depressant factors. The authors thus investigated the cardiovascular and metabolic effects of an adapted sodium bicarbonate therapy, including prevention of carbon dioxide increase with hyperventilation and ionized calcium decrease with calcium administration. Lactic acidosis was induced by hemorrhagic shock. Twenty animals were randomized into five groups: (1) standard resuscitation with blood retransfusion and norepinephrine (2) adapted sodium bicarbonate therapy (3) nonadapted sodium bicarbonate therapy (4) standard resuscitation plus calcium administration (5) hyperventilation. Evaluation was focused in vivo on extracellular pH, on intracellular pH estimated by P nuclear magnetic resonance and on myocardial contractility by conductance catheter. Aortic rings and mesenteric arteries were isolated and mounted in a myograph, after which arterial contractility was measured. All animals in the hyperventilation group died prematurely and were not included in the statistical analysis. When compared with sham rats, shock induced extracellular (median, 7.13; interquartile range, [0.10] vs. 7.30 [0.01]; P = 0.0007) and intracellular acidosis (7.26 [0.18] vs. 7.05 [0.13]; P = 0.0001), hyperlactatemia (7.30 [0.01] vs. 7.13 [0.10]; P = 0.0008), depressed myocardial elastance (2.87 [1.31] vs. 0.5 [0.53] mmHg/μl; P = 0.0001), and vascular hyporesponsiveness to vasoconstrictors. Compared with nonadapted therapy, adapted bicarbonate therapy normalized extracellular pH (7.03 [0.12] vs. 7.36 [0.04]; P < 0.05), increased intracellular pH to supraphysiological values, improved myocardial elastance (1.68 [0.41] vs. 0.72 [0.44] mmHg/μl; P < 0.05), and improved aortic and mesenteric vasoreactivity. A therapeutic strategy based on alkalinization with sodium bicarbonate along with hyperventilation and calcium administration increases pH and improves cardiovascular function.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium bicarbonate, tested according to Ph. Eur.
Sigma-Aldrich
L-Norepinephrine hydrochloride, ≥98.0% (sum of enantiomers, HPLC)
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, Molecular Biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sodium bicarbonate solution, solution (7.5%), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium bicarbonate, BioXtra, 99.5-100.5%
Supelco
Sodium bicarbonate concentrate, 0.1 M NaHCO3 in water, eluent concentrate for IC
Sigma-Aldrich
Sodium bicarbonate, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E500, 99.0-100.5%, powder
Sigma-Aldrich
Sodium bicarbonate, ReagentPlus®, ≥99.5%, powder
Sigma-Aldrich
Sodium bicarbonate, ACS reagent, ≥99.7%
Sigma-Aldrich
Sodium bicarbonate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Sodium bicarbonate, Vetec, reagent grade, 99%
USP
Sodium bicarbonate, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sodium hydrogencarbonate, −40-+140 mesh, ≥95%
Sigma-Aldrich
Sodium bicarbonate-12C, 99.9 atom % 12C