Skip to Content
Merck
CN

Glypican-3-targeted 89Zr PET imaging of hepatocellular carcinoma.

Journal of nuclear medicine : official publication, Society of Nuclear Medicine (2014-03-15)
Jonathan G Sham, Forrest M Kievit, John R Grierson, Robert S Miyaoka, Matthew M Yeh, Miqin Zhang, Raymond S Yeung, Satoshi Minoshima, James O Park
ABSTRACT

Hepatocellular carcinoma (HCC) is a devastating malignancy in which imperfect imaging plays a primary role in diagnosis. Glypican-3 (GPC3) is an HCC-specific cell surface proteoglycan overexpressed in most HCCs. This paper presents the use of (89)Zr-conjugated monoclonal antibody against GPC3 ((89)Zr-αGPC3) for intrahepatic tumor localization using PET. Polymerase chain reaction confirmed relative GPC3 expression in cell lines. In vitro binding, in vivo biodistribution, and small-animal PET studies were performed on GPC3-expressing HepG2 and non-GPC3-expressing HLF and RH7777 cells and orthotopic xenografts. (89)Zr-αGPC3 demonstrated antibody-dependent, antigen-specific tumor binding. HepG2 liver tumors exhibited high peak uptake (836.6 ± 86.6 percentage injected dose [%ID]/g) compared with background liver (27.5 ± 1.6 %ID/g). Tumor-to-liver contrast ratio was high and peaked at 32.5. The smallest HepG2 tumor (<1 mm) showed lower peak uptake (42.5 ± 6.4 %ID/g) and tumor-to-liver contrast (1.57) but was still clearly visible on PET. Day 7 tissue activity was still substantial in HepG2 tumors (466.4 ± 87.6 %ID/g) compared with control RH7777 tumors (3.9 ± 1.3 %ID/g, P < 0.01), indicating antigen specificity by (89)Zr-αGPC3. HepG2 tumor treated with unlabeled αGPC3 or heat-denatured (89)Zr-αGPC3 demonstrated tumor activity (2.1 %ID/g) comparable to that of control xenografts, confirming antibody dependency. This study demonstrated the feasibility of using (89)Zr-αGPC3 to image HCC in the liver, as well as the qualitative determination of GPC3 expression via small-animal PET. The ability to clarify the identity of small liver lesions with an HCC-specific PET probe would provide clinicians with vital information that could significantly alter patient management, warranting further investigation for clinical translation.

MATERIALS
Product Number
Brand
Product Description

Zirconium, rod, 100mm, diameter 5.0mm, centerless ground, 99.2%
Zirconium, foil, 25x25mm, thickness 0.125mm, annealed, 99.2%
Sigma-Aldrich
Collagen from Engelbreth-Holm-Swarm murine sarcoma basement membrane, Type IV (Miller), lyophilized powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type III (Sigma Type X), powder
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type V (Sigma Type IX), powder
Sigma-Aldrich
Collagen, Type I solution from rat tail, BioReagent, suitable for cell culture, sterile-filtered
Sigma-Aldrich
Collagen from rat tail, Bornstein and Traub Type I, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen Type IV from human cell culture, Bornstein and Traub Type IV, 0.3 mg/mL, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type I (Sigma Type VIII), powder
Sigma-Aldrich
Collagen from calf skin, Bornstein and Traub Type I, (0.1% solution in 0.1 M acetic acid), aseptically processed, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from chicken sternal cartilage, Type II (Miller), powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, powder
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, powder
Sigma-Aldrich
Collagen human, Bornstein and Traub Type I, acid soluble, powder, ~95% (SDS-PAGE)
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, solution, suitable for cell culture, High Performance