Skip to Content
Merck
CN

Modifying the vessel walls in porcine kidneys during machine perfusion.

The Journal of surgical research (2014-05-14)
Amir Sedigh, Rolf Larsson, Johan Brännström, Peetra Magnusson, Erik Larsson, Gunnar Tufveson, Tomas Lorant
ABSTRACT

Endothelial glycocalyx regulates the endothelial function and plays an active role in maintaining vascular homeostasis. During ischema and reperfusion, the glycocalyx is rapidly shed into the blood stream. A Corline heparin conjugate (CHC; Corline systems AB, Uppsala, Sweden) consists of 70 heparin molecules that have the capacity to adhere strongly to biological tissues expressing heparin affinity. We hypothesized that CHC could be used to restore disrupted glycocalyx in vivo in kidneys from brain-dead pigs. Brain death was induced in male landrace pigs (n = 6) by inflating a balloon catheter in the epidural space until obtaining negative cerebral perfusion. The recovered kidneys (n = 5 + 5) were perfused by hypothermic machine perfusion using two Lifeport kidney transporters (Organ Recovery Systems, Chicago, IL). CHC (50 mg) (including 25 mg biotinylated CHC) or 50 mg unfractionated heparin (control) was added to the perfusion fluid in the respective machines. In one case, the kidneys were used only for dose escalation of CHC with the same procedure. CHC was detected by immunofluorescence and confocal microscopy in the inner surface of the vessel walls. The binding of CHC in the kidney was confirmed indirectly by consumption of CHC from the perfusion fluid. In this first attempt, we show that CHC maybe used to coat the vessel walls of perfused kidneys during hypothermic machine perfusion, an approach that could become useful in restoring endothelial glycocalyx of kidneys recovered from deceased donors to protect vascular endothelium and possibly ameliorate ischemia and reperfusion injuries.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Collagen, Type I solution from rat tail, BioReagent, suitable for cell culture, sterile-filtered
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type V (Sigma Type IX), powder
Sigma-Aldrich
Collagen from Engelbreth-Holm-Swarm murine sarcoma basement membrane, Type IV (Miller), lyophilized powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type III (Sigma Type X), powder
Sigma-Aldrich
Collagen from rat tail, Bornstein and Traub Type I, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen Type IV from human cell culture, Bornstein and Traub Type IV, 0.3 mg/mL, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, powder
Sigma-Aldrich
Collagen from chicken sternal cartilage, Type II (Miller), powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen human, Bornstein and Traub Type I, acid soluble, powder, ~95% (SDS-PAGE)
Sigma-Aldrich
Collagen from calf skin, Bornstein and Traub Type I, (0.1% solution in 0.1 M acetic acid), aseptically processed, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type I (Sigma Type VIII), powder
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, powder
Sigma-Aldrich
Collagen from human placenta, Bornstein and Traub Type IV, solution, suitable for cell culture, High Performance