Merck
CN
  • Intracavernous delivery of clonal mesenchymal stem cells restores erectile function in a mouse model of cavernous nerve injury.

Intracavernous delivery of clonal mesenchymal stem cells restores erectile function in a mouse model of cavernous nerve injury.

The journal of sexual medicine (2013-11-21)
Ji-Kan Ryu, Da-Ham Kim, Kang Moon Song, Tacghee Yi, Jun-Kyu Suh, Sun U Song
ABSTRACT

Recently, much attention has focused on stem cell therapy; bone marrow-derived stem cells (BMSCs) are one of the most studied mesenchymal stem cells used in the field of erectile dysfunction (ED). However, a major limitation for the clinical application of stem cell therapy is the heterogeneous nature of the isolated cells, which may cause different treatment outcomes. We investigated the effectiveness of mouse clonal BMSCs obtained from a single colony by using subfractionation culturing method (SCM) for erectile function in a mouse model of cavernous nerve injury (CNI). Twelve-week-old C57BL/6J mice were divided into four groups: sham operation group, bilateral CNI group receiving a single intracavernous (IC) injection of phosphate-buffered saline (20 μL) or clonal BMSCs (3 × 10(5) cells/20 μL), and receiving a single intraperitoneal (IP) injection of clonal BMSCs (3 × 10(5) cells/20 μL). The clonal BMSC line was analyzed for cell-surface epitopes by using fluorescence-activated cell sorting and for differentiation potential. Two weeks after CNI and treatment, erectile function was measured by electrically stimulating the cavernous nerve. The penis was harvested for histologic examinations and Western blot analysis. Clonal BMSCs expressed cell surface markers for mesenchymal stem cells and were capable of differentiating into several lineages, including adipogenic, osteogenic, and chondrogenic cells. Both IC and IP injections of clonal BMSCs significantly restored cavernous endothelial and smooth muscle content, and penile nNOS and neurofilament content in CNI mice. IC injection of clonal BMSCs induced significant recovery of erectile function, which reached 90-100% of the sham control values, whereas IP injection of clonal BMSCs partially restored erectile function. We established a homogeneous population of mouse clonal BMSCs using SCM; clonal BMSCs successfully restored erectile function in CNI mice. The homogeneous nature of clonal mesenchymal stem cells may allow their clinical applications.

MATERIALS
Product Number
Brand
Product Description

Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
USP
Ascorbic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Ascorbic acid, European Pharmacopoeia (EP) Reference Standard
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Supelco
L-Ascorbic acid, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
L-Ascorbic acid, analytical standard
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
3-Isobutyl-1-methylxanthine, ≥99% (HPLC), powder
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
3-Isobutyl-1-methylxanthine, BioUltra, ≥99%
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-Ascorbic acid, tested according to Ph. Eur.
Sigma-Aldrich
Selenous acid, 98%
Sigma-Aldrich
Selenous acid, 99.999% trace metals basis