Skip to Content
Merck
CN
  • Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate.

Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate.

PloS one (2014-11-02)
Lisa S Pike Winer, Min Wu
ABSTRACT

Cancer cells exhibit remarkable alterations in cellular metabolism, particularly in their nutrient substrate preference. We have devised several experimental methods that rapidly analyze the metabolic substrate flux in cancer cells: glycolysis and the oxidation of major fuel substrates glucose, glutamine, and fatty acids. Using the XF Extracellular Flux analyzer, these methods measure, in real-time, the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of living cells in a microplate as they respond to substrates and metabolic perturbation agents. In proof-of-principle experiments, we analyzed substrate flux and mitochondrial bioenergetics of two human glioblastoma cell lines, SF188s and SF188f, which were derived from the same parental cell line but proliferate at slow and fast rates, respectively. These analyses led to three interesting observations: 1) both cell lines respired effectively with substantial endogenous substrate respiration; 2) SF188f cells underwent a significant shift from glycolytic to oxidative metabolism, along with a high rate of glutamine oxidation relative to SF188s cells; and 3) the mitochondrial proton leak-linked respiration of SF188f cells increased significantly compared to SF188s cells. It is plausible that the proton leak of SF188f cells may play a role in allowing continuous glutamine-fueled anaplerotic TCA cycle flux by partially uncoupling the TCA cycle from oxidative phosphorylation. Taken together, these rapid, sensitive and high-throughput substrate flux analysis methods introduce highly valuable approaches for developing a greater understanding of genetic and epigenetic pathways that regulate cellular metabolism, and the development of therapies that target cancer metabolism.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Trypan Blue, ≥80% (HPLC), Dye content 60 %
Sigma-Aldrich
Trypan Blue, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, ≥98% (HPLC), powder
Sigma-Aldrich
Sodium palmitate, ≥98.5%
Sigma-Aldrich
2-Deoxy-D-glucose, ≥99% (GC), crystalline
Sigma-Aldrich
2-Deoxy-D-glucose, ≥98% (GC), crystalline
Sigma-Aldrich
2-Deoxy-D-glucose, ≥98% (GC), BioXtra
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Dulbecco′s Modified Eagle′s Medium, Without glucose, L-glutamine, phenol red, sodium pyruvate and sodium bicarbonate, powder, suitable for cell culture
Sigma-Aldrich
Sodium pyruvate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
Trypan Blue, Vetec, reagent grade
Sigma-Aldrich
Sodium pyruvate, Vetec, reagent grade, 98%
Sigma-Aldrich
Rotenone, ≥95%
Sigma-Aldrich
Trypan Blue solution, 0.4%, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Trypan Blue solution, 0.4%, suitable for microscopy
Supelco
Rotenone, PESTANAL®, analytical standard
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Glutamine, Vetec, reagent grade, ≥99%
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Supelco
L-Glutamine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
SAFC
L-Glutamine