Skip to Content
Merck
CN
  • FAS-based cell depletion facilitates the selective isolation of mouse induced pluripotent stem cells.

FAS-based cell depletion facilitates the selective isolation of mouse induced pluripotent stem cells.

PloS one (2014-07-17)
Eva Warlich, Axel Schambach, Dominik Lock, Dirk Wedekind, Silke Glage, Dominik Eckardt, Andreas Bosio, Sebastian Knöbel
ABSTRACT

Cellular reprogramming of somatic cells into induced pluripotent stem cells (iPSC) opens up new avenues for basic research and regenerative medicine. However, the low efficiency of the procedure remains a major limitation. To identify iPSC, many studies to date relied on the activation of pluripotency-associated transcription factors. Such strategies are either retrospective or depend on genetically modified reporter cells. We aimed at identifying naturally occurring surface proteins in a systematic approach, focusing on antibody-targeted markers to enable live-cell identification and selective isolation. We tested 170 antibodies for differential expression between mouse embryonic fibroblasts (MEF) and mouse pluripotent stem cells (PSC). Differentially expressed markers were evaluated for their ability to identify and isolate iPSC in reprogramming cultures. Epithelial cell adhesion molecule (EPCAM) and stage-specific embryonic antigen 1 (SSEA1) were upregulated early during reprogramming and enabled enrichment of OCT4 expressing cells by magnetic cell sorting. Downregulation of somatic marker FAS was equally suitable to enrich OCT4 expressing cells, which has not been described so far. Furthermore, FAS downregulation correlated with viral transgene silencing. Finally, using the marker SSEA-1 we exemplified that magnetic separation enables the establishment of bona fide iPSC and propose strategies to enrich iPSC from a variety of human source tissues.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Supelco
Valproic acid, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Valproic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
L-Ascorbic acid, tested according to Ph. Eur.
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, 36.5-38% in H2O
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Sigma-Aldrich
2-Propylpentanoic acid
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Valproic acid for system suitability, European Pharmacopoeia (EP) Reference Standard
Supelco
L-Ascorbic acid, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland