Skip to Content
Merck
CN
  • Expression of drug transporters and drug metabolizing enzymes in the bladder urothelium in man and affinity of the bladder spasmolytic trospium chloride to transporters likely involved in its pharmacokinetics.

Expression of drug transporters and drug metabolizing enzymes in the bladder urothelium in man and affinity of the bladder spasmolytic trospium chloride to transporters likely involved in its pharmacokinetics.

Molecular pharmaceutics (2014-12-04)
Maria Bexten, Stefan Oswald, Markus Grube, Jia Jia, Tanja Graf, Uwe Zimmermann, Kathrin Rodewald, Oliver Zolk, Ulrich Schwantes, Werner Siegmund, Markus Keiser
ABSTRACT

The cationic, water-soluble quaternary trospium chloride (TC) is incompletely absorbed from the gut and undergoes wide distribution but does not pass the blood-brain barrier. It is secreted by the kidneys, liver, and intestine. To evaluate potential transport mechanisms for TC, we measured affinity of the drug to the human uptake and efflux transporters known to be of pharmacokinetic relevance. Affinity of TC to the uptake transporters OATP1A2, -1B1, -1B3, -2B1, OCT1, -2, -3, OCTN2, NTCP, and ASBT and the efflux carriers P-gp, MRP2 and MRP3 transfected in HEK293 and MDCK2 cells was measured. To identify relevant pharmacokinetic mechanisms in the bladder urothelium, mRNA expression of multidrug transporters, drug metabolizing enzymes, and nuclear receptors, and the uptake of TC into primary human bladder urothelium (HBU) cells were measured. TC was shown to be a substrate of OATP1A2 (Km = 6.9 ± 1.3 μmol/L; Vmax = 41.6 ± 1.8 pmol/mg·min), OCT1 (Km = 106 ± 16 μmol/L; Vmax = 269 ± 18 pmol/mg·min), and P-gp (Km = 34.9 ± 7.5 μmol/L; Vmax = 105 ± 9.1 pmol/mg·min, lipovesicle assay). The genetic OATP1A2 variants *2 and *3 were loss-of-function transporters for TC. The mRNA expression analysis identified the following transporter proteins in the human urothelium: ABCB1 (P-gp), ABCC1-5 (MRP1-5), ABCG2 (BCRP), SLCO2B1 (OATP2B1), SLCO4A1 (OATP4A1), SLC22A1 (OCT1), SLC22A3 (OCT3), SLC22A4 (OCTN1), SLC22A5 (OCTN2), and SLC47A1 (MATE1). Immuno-reactive P-gp and OATP1A2 were localized to the apical cell layers. Drug metabolizing enzymes CYP3A5, -2B6, -2B7 -2E1, SULT1A1-4, UGT1A1-10, and UGT2B15, and nuclear receptors NR1H3 and NR1H4 were also expressed on mRNA level. TC was taken up into HBU cells (Km = 18.5 ± 4.8 μmol/L; Vmax = 106 ± 11.3 pmol/mg·min) by mechanisms that could be synergistically inhibited by naringin (IC50 = 10.8 (8.4; 13.8) μmol/L) and verapamil (IC50 = 4.6 (2.8; 7.5) μmol/L), inhibitors of OATP1A2 and OCT1, respectively. Affinity of TC to OCT1 and P-glycoprotein may be the reason for incomplete oral absorption, wide distribution into liver and kidneys, and substantial intestinal and renal secretions. Absence of brain distribution may result from affinity to P-gp and a low affinity to OATP1A2. The human urothelium expresses many drug transporters and drug metabolizing enzymes that may interact with TC and other drugs eliminated into the urine.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC), free-flowing, Redi-Dri
Sigma-Aldrich
Sodium dodecyl sulfate, Vetec, reagent grade, ≥98%
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, Vetec, reagent grade, 98%
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
Sodium deoxycholate, BioXtra, ≥98.0% (dry matter, NT)
Sigma-Aldrich
Naringin, ≥95% (HPLC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, 20% in H2O
Sigma-Aldrich
Sodium deoxycholate, ≥97% (titration)
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Naringin, ≥90% (HPLC), from citrus fruit
Sigma-Aldrich
Sulfobromophthalein disodium salt hydrate, used to study hepatocyte transport functions
Supelco
Naringin, analytical standard
Sodium laurilsulfate, European Pharmacopoeia (EP) Reference Standard
Naringin, European Pharmacopoeia (EP) Reference Standard
SAFC
Sodium deoxycholate
Sigma-Aldrich
Sodium deoxycholate, Vetec, reagent grade, ≥97%