Skip to Content
Merck
CN

Cilengitide--exceptional pseudopolymorphism of a cyclic pentapeptide.

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences (2015-02-15)
C Saal, M Lange, C Kuehn, H Untenecker, A Jonczyk, S Petersen, G Scholz, V Buback, M Dotzauer, H Bauer, J Foerster, J Schumacher, A Metz, M Schmidt, K Seemann
ABSTRACT

Cilengitide (Cil) represents a cyclic pentapeptide, cyclo-(Arg-Gly-Asp-D-Phe-N-MeVal). Existence of an anhydrate form (A1) and a tetrahydrate form Cil1(H2O)4 has been observed. Surprisingly the anhydrate form proved to be more stable in aqueous environment compared to the tetrahydrate form. Assessment of thermodynamic stability has been carried out by competitive slurry experiments as well as by investigation of thermodynamic solubility. The lower solubility of the anhydrate form A1 can be explained by the hydrogen bonding motifs within the crystal structures. The tetrahydrate form Cil1(H2O)4 represents a special manifestation of a class of non-stoichiometric water-alcohol solvates Cil1(H2O)x(alcohol)y where methanol and ethanol can substitute water molecules in the crystal lattice of the tetrahydrate form leading to the hydrate-solvate systems Cil1(H2O)x(methanol)y named S1 and Cil1(H2O)x(ethanol)y named S2 with x ⩽ 4, y ⩽ 1 and y ⩽ 2-0.5x. The non-stoichiometric water alcohol solvates exhibit a higher solubility compared to the anhydrate form but convert rapidly to the anhydrate form in aqueous environments. Accordingly, the better soluble non-stoichiometric water alcohol solvates cannot be obtained by crystallization from aqueous media. However slurries or crystallization from solvent mixtures containing methanol and ethanol represent a means to obtain the highly soluble pseudo-polymorphs S1 and S2 and to circumvent formation of the low soluble anhydrate form A1.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Acetone, analytical standard
Supelco
Methanol, analytical standard
Sigma-Aldrich
Potassium fluoride, BioUltra, ≥99.5% (F)
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Supelco
Acetone, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, purification grade, 99.8%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Acetone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetone, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Acetone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
Proline, European Pharmacopoeia (EP) Reference Standard
Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.8%