Merck
CN
  • Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery.

Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery.

Journal of the American Chemical Society (2015-02-14)
Jie Song, Long Wang, Yuhao Lu, Jue Liu, Bingkun Guo, Penghao Xiao, Jong-Jan Lee, Xiao-Qing Yang, Graeme Henkelman, John B Goodenough
ABSTRACT

Sodium is globally available, which makes a sodium-ion rechargeable battery preferable to a lithium-ion battery for large-scale storage of electrical energy, provided a host cathode for Na can be found that provides the necessary capacity, voltage, and cycle life at the prescribed charge/discharge rate. Low-cost hexacyanometallates are promising cathodes because of their ease of synthesis and rigid open framework that enables fast Na(+) insertion and extraction. Here we report an intriguing effect of interstitial H2O on the structure and electrochemical properties of sodium manganese(II) hexacyanoferrates(II) with the nominal composition Na2MnFe(CN)6·zH2O (Na2-δMnHFC). The newly discovered dehydrated Na2-δMnHFC phase exhibits superior electrochemical performance compared to other reported Na-ion cathode materials; it delivers at 3.5 V a reversible capacity of 150 mAh g(-1) in a sodium half cell and 140 mAh g(-1) in a full cell with a hard-carbon anode. At a charge/discharge rate of 20 C, the half-cell capacity is 120 mAh g(-1), and at 0.7 C, the cell exhibits 75% capacity retention after 500 cycles.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Fluoroethylene carbonate, 99%
Sigma-Aldrich
Ethylene carbonate, 98%
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, >40 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), powder (free-flowing), 1 μm particle size
Sigma-Aldrich
Diethyl carbonate, anhydrous, ≥99%
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, 200 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, 35 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), powder (free-flowing), ≤12 μm particle size
Sigma-Aldrich
Poly(tetrafluoroethylene), beads
Sigma-Aldrich
Poly(tetrafluoroethylene), powder, ≥350 μm particle size
Sigma-Aldrich
Diethyl carbonate, 99%