Skip to Content
Merck
CN
  • Presence of diadenosine polyphosphates in microdialysis samples from rat cerebellum in vivo: effect of mild hyperammonemia on their receptors.

Presence of diadenosine polyphosphates in microdialysis samples from rat cerebellum in vivo: effect of mild hyperammonemia on their receptors.

Purinergic signalling (2013-08-15)
Javier Gualix, Rosa Gómez-Villafuertes, Jesús Pintor, Marta Llansola, Vicente Felipo, M Teresa Miras-Portugal
ABSTRACT

Diadenosine triphosphate (Ap(3)A), diadenosine tetraphosphate (Ap(4)A), and diadenosine pentaphosphate (Ap(5)A) have been identified in microdialysis samples from the cerebellum of conscious freely moving rats, under basal conditions, by means of a high-performance liquid chromatography method. The occurrence of Ap(3)A in the cerebellar microdyalisates is noteworthy, as the presence of this compound in the interstitial medium in neural tissues has not been previously described. The concentrations measured for the diadenosine polyphosphates in the cerebellar dialysate were (in nanomolar) 10.5 ± 2.9, 5.4 ± 1.2, and 5.8 ± 1.3 for Ap(3)A, Ap(4)A, and Ap(5)A, respectively. These concentrations are in the range that allows the activation of the presynaptic dinucleotide receptor in nerve terminals. However, a possible interaction of these dinucleotides with other purinergic receptors cannot be ruled out, as rat cerebellum expresses a variety of P2X or P2Y receptors susceptible to be activated by diadenosine polyphosphates, such as the P2X1-4, P2Y(1), P2Y(2), P2Y(4), and P2Y(12) receptors, as demonstrated by quantitative real-time PCR. Also, the ecto-nucleotide pyrophosphatases/phosphodiesterases NPP1 and NPP3, able to hydrolyze the diadenosine polyphosphates and terminate their extracellular actions, are expressed in the rat cerebellum. All these evidences contribute to reinforce the role of diadenosine polyphosphates as signaling molecules in the central nervous system. Finally, we have analyzed the possible differences in the concentration of diadenosine polyphosphates in the cerebellar extracellular medium and changes in the expression levels of their receptors and hydrolyzing enzymes in an animal model of moderate hyperammonemia.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tetrabutylammonium hydrogensulfate, 97%
Sigma-Aldrich
Tetrabutylammonium bisulfate, puriss., ≥99.0% (T)
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Tetrabutylammonium bisulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Tetrabutylammonium hydrogensulfate, anhydrous, free-flowing, Redi-Dri, 97%
Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile, Preparateur, ≥99.9% (GC), One-time steel-plastic (SP) drum
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Tetrabutylammonium bisulfate solution, ~55% in H2O
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Supelco
Tetrabutylammonium bisulfate solution, suitable for ion pair chromatography, LiChropur, concentrate, ampule
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, ≥99.5% (GC)
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%