Merck
CN
  • Plant-plant-microbe mechanisms involved in soil-borne disease suppression on a maize and pepper intercropping system.

Plant-plant-microbe mechanisms involved in soil-borne disease suppression on a maize and pepper intercropping system.

PloS one (2015-01-01)
Min Yang, Yu Zhang, Lei Qi, Xinyue Mei, Jingjing Liao, Xupo Ding, Weiping Deng, Limin Fan, Xiahong He, Jorge M Vivanco, Chengyun Li, Youyong Zhu, Shusheng Zhu
ABSTRACT

Intercropping systems could increase crop diversity and avoid vulnerability to biotic stresses. Most studies have shown that intercropping can provide relief to crops against wind-dispersed pathogens. However, there was limited data on how the practice of intercropping help crops against soil-borne Phytophthora disease. Compared to pepper monoculture, a large scale intercropping study of maize grown between pepper rows reduced disease levels of the soil-borne pepper Phytophthora blight. These reduced disease levels of Phytophthora in the intercropping system were correlated with the ability of maize plants to form a "root wall" that restricted the movement of Phytophthora capsici across rows. Experimentally, it was found that maize roots attracted the zoospores of P. capsici and then inhibited their growth. When maize plants were grown in close proximity to each other, the roots produced and secreted larger quantities of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and 6-methoxy-2-benzoxazolinone (MBOA). Furthermore, MBOA, benzothiazole (BZO), and 2-(methylthio)-benzothiazole (MBZO) were identified in root exudates of maize and showed antimicrobial activity against P. capsici. Maize could form a "root wall" to restrict the spread of P. capsici across rows in maize and pepper intercropping systems. Antimicrobe compounds secreted by maize root were one of the factors that resulted in the inhibition of P. capsici. These results provide new insights into plant-plant-microbe mechanisms involved in intercropping systems.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol solution, contains 0.50 % (v/v) triethylamine
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Supelco
Dichloromethane solution, certified reference material, 5000 μg/mL in methanol
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Methanol, purification grade, 99.8%
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetic acid, glacial, puriss., 99-100%
Sigma-Aldrich
Dichloromethane, puriss., meets analytical specification of Ph. Eur., NF, ≥99% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Acetic acid, analytical standard
Supelco
Dichloromethane, Selectophore, ≥99.5%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Supelco
Methanol, analytical standard
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Supelco
Dichloromethane, analytical standard
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Dichloromethane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Dichloromethane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer